Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Oded Goren x
Clear All Modify Search
Free access

Stephen J. Monteith, Neal F. Kassell, Oded Goren and Sagi Harnof

Intracerebral hemorrhage remains a significant cause of morbidity and mortality. Current surgical therapies aim to use a minimally invasive approach to remove as much of the clot as possible without causing undue disruption to surrounding neural structures. Transcranial MR-guided focused ultrasound (MRgFUS) surgery is an emerging technology that permits a highly concentrated focal point of ultrasound energy to be deposited to a target deep within the brain without an incision or craniotomy. With appropriate ultrasound parameters it has been shown that MRgFUS can effectively liquefy large-volume blood clots through the human calvaria. In this review the authors discuss the rationale for using MRgFUS to noninvasively liquefy intracerebral hemorrhage (ICH), thereby permitting minimally invasive aspiration of the liquefied clot via a small drainage tube. The mechanism of action of MRgFUS sonothrombolysis; current investigational work with in vitro, in vivo, and cadaveric models of ICH; and the potential clinical application of this disruptive technology for the treatment of ICH are discussed.

Free access

Oded Goren, Stephen J. Monteith, Moshe Hadani, Mati Bakon and Sagi Harnof

This paper reviews the current intraoperative imaging tools that are available to assist neurosurgeons in the treatment of intracerebral hemorrhage (ICH). This review shares the authors' experience with each modality and discusses the advantages, potential limitations, and disadvantages of each.

Surgery for ICH is directed at blood clot removal, reduction of intracranial pressure, and minimization of secondary damage associated with hematoma breakdown products. For effective occlusion and safe obliteration of vascular anomalies associated with ICH, vascular neurosurgeons today require a thorough understanding of the various intraoperative imaging modalities available for obtaining real-time information. Use of one or more of these modalities may improve the surgeon's confidence during the procedure, the patient's safety during surgery, and surgical outcome.

The modern techniques discussed include 1) indocyanine green–based video angiography, which provides real-time information based on high-quality images showing the residual filling of vascular pathological entities and the patency of blood vessels of any size in the surgical field; and 2) intraoperative angiography, which remains the gold standard intraoperative diagnostic test in the surgical management of cerebral aneurysms and arteriovenous malformations. Hybrid procedures, providing multimodality image-guided surgeries and combining endovascular with microsurgical strategies within the same surgical session, have become feasible and safe. Microdoppler is a safe, noninvasive, and reliable technique for evaluation of hemodynamics of vessels in the surgical field, with the advantage of ease of use. Intraoperative MRI provides an effective navigation tool for cavernoma surgery, in addition to assessing the extent of resection during the procedure. Intraoperative CT scanning has the advantage of very high sensitivity to acute bleeding, thereby assisting in the confirmation of the extent of hematoma evacuation and the extent of vascular anomaly resection. Intraoperative ultrasound aids navigation and evacuation assessment during intracerebral hematoma evacuation surgeries. It supports the concept of minimally invasive surgery and has undergone extensive development in recent years, with the quality of ultrasound imaging having improved considerably.

Image-guided therapy, combined with modern intraoperative imaging modalities, has changed the fundamentals of conventional vascular neurosurgery by presenting real-time visualization of both normal tissue and pathological entities. These imaging techniques are important adjuncts to the surgeon's standard surgical armamentarium. Familiarity with these imaging modalities may help the surgeon complete procedures with improved safety, efficiency, and clinical outcome.