Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Nolan Altman x
  • Refine by Access: all x
Clear All Modify Search
Restricted access

Nicole E. Hernandez, Victor M. Lu, Nolan Altman, John Ragheb, Toba N. Niazi, and Shelly Wang

OBJECTIVE

MRI is increasingly employed to assess intrauterine fetal anomalies. Central nervous system (CNS) anomalies are common structural conditions that warrant evaluation with fetal MRI and subsequent prenatal consultation with a pediatric neurosurgeon. As the use of fetal MRI increases, there is greater impetus to understand the most common CNS structural anomalies diagnosed in utero, as well as their natural histories.

METHODS

The authors performed a single-center retrospective review of fetal MRI evaluations performed between January 2012 and December 2020. Children who underwent both prenatal and postnatal neurosurgical evaluations of CNS anomalies were included. Specific CNS anomalies on fetal MRI, associated extra-CNS findings, and suspicion for genetic abnormality or syndromes were noted. Postnatal clinical status and interventions were assessed.

RESULTS

Between January 2012 and December 2020, a total of 469 fetal MRI evaluations were performed; of these, 114 maternal-fetal pairs had CNS anomalies that warranted prenatal consultation and postnatal pediatric neurosurgical follow-up. This cohort included 67 male infants (59%), with a mean ± SD follow-up of 29.8 ± 25.0 months after birth. Fetal MRI was performed at 27.3 ± 5.8 weeks of gestational age. The most frequently reported CNS abnormalities were ventriculomegaly (57%), agenesis or thinning of the corpus callosum (33%), Dandy-Walker complex (DWC) (21%), neuronal migration disorders (18%), and abnormalities of the septum pellucidum (17%). Twenty-one children (18%) required neurosurgical intervention at a mean age of 2.4 ± 3.7 months. The most common surgical conditions included myelomeningocele, moderate to severe ventriculomegaly, encephalocele, and arachnoid cyst. Corpus callosum agenesis or thinning was associated with developmental delay (p = 0.02) and systemic anomalies (p = 0.05). The majority of prenatal patients referred for DWC had Dandy-Walker variants that did not require surgical intervention.

CONCLUSIONS

The most common conditions for prenatal neurosurgical assessment were ventriculomegaly, corpus callosum anomaly, and DWC, whereas the most common surgical conditions were myelomeningocele, hydrocephalus, and arachnoid cyst. Only 18% of prenatal neurosurgical consultations resulted in surgical intervention during infancy. The majority of referrals for prenatal mild ventriculomegaly and DWC were not associated with developmental or surgical sequelae. Patients with corpus callosum abnormalities should be concurrently referred to a neurologist for developmental assessments.

Restricted access

Travis S. Tierney, Kambiz N. Alavian, Nolan Altman, Sanjiv Bhatia, Michael Duchowny, Ann Hyslop, Prasanna Jayakar, Trevor Resnick, Shelly Wang, Ian Miller, and John Ragheb

OBJECTIVE

Magnetic resonance–guided focused ultrasound (MRgFUS) is an incisionless procedure capable of thermoablation through the focus of multiple acoustic beams. Although MRgFUS is currently approved for the treatment of tremor in adults, its safety and feasibility profile for intracranial lesions in the pediatric and young adult population remains unknown.

METHODS

The long-term outcomes of a prospective single-center, single-arm trial of MRgFUS at Nicklaus Children’s Hospital in Miami, Florida, are presented. Patients 15–22 years of age with centrally located lesions were recruited, clinically consistent with WHO grade I tumors that require surgical intervention. This cohort consisted of 4 patients with hypothalamic hamartoma (HH), and 1 patient with tuberous sclerosis complex harboring a subependymal giant cell astrocytoma (SEGA).

RESULTS

In each case, high-intensity FUS was used to target the intracranial lesion. Real-time MRI was used to monitor the thermoablations. Primary outcomes of interest were tolerability, feasibility, and safety of FUS. The radiographic ablation volume on intra- and postoperative MRI was also assessed. All 5 patients tolerated the procedure without any complications. Successful thermoablation was achieved in 4 of the 5 cases; the calcified SEGA was undertreated due to intratumor calcification, which prevented attainment of the target ablation temperature. The HHs underwent target tissue thermoablations that led to MR signal changes at the treatment site. For the patients harboring HHs, FUS thermoablations occurred without procedure-related complications and led to improvement in seizure control or hypothalamic hyperphagia. All 5 patients were discharged home on postoperative day 1 or 2, without any readmissions. There were no cases of hemorrhage, electrolyte derangement, endocrinopathy, or new neurological deficit in this cohort.

CONCLUSIONS

This experience demonstrates that FUS thermoablation of centrally located brain lesions in adolescents and young adults can be performed safely and that it provides therapeutic benefit for associated symptoms.