Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Nir Shimony x
  • All content x
Clear All Modify Search
Restricted access

Rachel Grossman, Erez Nossek, Nir Shimony, Michal Raz, and Zvi Ram

The authors report a case of primary CNS lymphoma located in the floor of the fourth ventricle that showed intense fluorescence after preoperative administration of 5-aminolevulinic acid. The authors believe that this is the first demonstration of a 5-aminolevulinic acid–induced fluorescence pattern in primary CNS lymphoma.

Full access

Rajiv R. Iyer, Carolyn M. Carey, S. Alex Rottgers, Lisa Tetreault, Nir Shimony, Jennifer Katzenstein, Ernesto Ruas, and Gerald F. Tuite

OBJECTIVE

Infants with severe hydrocephalus and extreme macrocephaly typically undergo CSF diversion early in life, which can result in significant cranial deformity due to CSF overdrainage. In this scenario, overlap of the cranial plates can precede the development of secondary synostosis and/or severe, permanent cranial deformity. As a result, extensive cranial vault remodeling is sometimes undertaken later in life, which is often challenging and has been associated with mortality and a high morbidity rate. The authors have previously described a technique for early postnatal cranial vault reduction and fixation (CVRF), in which the calvarial bones are stabilized using absorbable fixation plates in the neonatal period, in an attempt to facilitate patient positioning, simplify hydrocephalus management, and improve cosmesis. Here, the authors describe their institutional experience managing patients with extreme neonatal hydrocephalus with CSF diversion, with and without CVRF, over the past 12 years.

METHODS

The authors retrospectively reviewed the charts of infants with extreme hydrocephalus (head circumference > 49 cm) treated at their children’s hospital with ventriculoperitoneal shunting, with or without CVRF, between 2005 and 2017. Data collected included age, sex, etiology of hydrocephalus, type of CVRF performed (anterior, posterior, or combined), follow-up duration, orbitofrontal circumference, craniometric measurements, intraoperative blood loss, operative duration, and postoperative complications. Developmental data were collected using the third edition of the Ages and Stages Questionnaire. Photographic imaging was used to demonstrate esthetic outcomes, and family questionnaires were used to evaluate satisfaction with the esthetic outcome.

RESULTS

Eleven patients with extreme neonatal hydrocephalus underwent CSF shunting; 5 underwent shunting alone and 6 patients underwent shunting and CVRF. For patients who underwent shunting and CVRF, the median age at CVRF was 6 days and the median interval between shunt placement and CVRF was 2.5 days. The mean extent of calvarial vault volume reduction was 44.5% (± 3.9%). The mean duration of the CVRF procedure was 108 minutes, and 5 of 6 patients required intraoperative transfusion. Of the 5 patients who underwent shunting alone, 3 developed severe cranial deformities. Of 6 patients who underwent shunting and CVRF, 1 had a poor cosmetic outcome. In the shunting-alone group, 2 patients died and 1 required extensive cranial vault correction at 10 years of age. One patient in the shunting and CVRF group also died.

CONCLUSIONS

CVRF in combination with CSF shunting in the neonatal period can simplify the treatment of the rare case of severe hydrocephalic macrocephaly and leads to cosmetic outcomes that are considered good by their families.

Full access

Nir Shimony, Uri Amit, Bella Minz, Rachel Grossman, Marc A. Dany, Lior Gonen, Karina Kandov, Zvi Ram, and Avi A. Weinbroum

OBJECTIVE

The aim of this study was to assess in-hospital (immediate) postoperative pain scores and analgesic consumption (primary goals) and preoperative anxiety and sleep quality (secondary goals) in patients who underwent craniotomy and were treated with pregabalin (PGL). Whenever possible, out-of-hospital pain scores and analgesics usage data were obtained as well.

METHODS

This prospective, randomized, double-blind and controlled study was conducted in consenting patients who underwent elective craniotomy for brain tumor resection at Tel Aviv Medical Center between 2012 and 2014. Patients received either 150 mg PGL (n = 50) or 500 mg starch (placebo; n = 50) on the evening before surgery, 1.5 hours before surgery, and twice daily for 72 hours following surgery. All patients spent the night before surgery in the hospital, and no other premedication was administered. Opioids and nonsteroidal antiinflammatory drugs were used for pain, which was self-rated by means of a numerical rating scale (score range 0–10).

RESULTS

Eighty-eight patients completed the study. Data on the American Society of Anesthesiologists class, age, body weight, duration of surgery, and intraoperative drugs were similar for both groups. The pain scores during postoperative Days 0 to 2 were significantly lower in the PGL group than in the placebo group (p < 0.01). Analgesic consumption was also lower in the PGL group, both immediately and 1 month after surgery. There were fewer requests for antiemetics in the PGL group, and the rate of postoperative nausea and vomiting was lower. The preoperative anxiety level and the quality of sleep were significantly better in the PGL group (p < 0.01). There were no PGL-associated major adverse events.

CONCLUSIONS

Perioperative use of twice-daily 150 mg pregabalin attenuates preoperative anxiety, improves sleep quality, and reduces postoperative pain scores and analgesic usage without increasing the rate of adverse effects.

Clinical trial registration no.: NCT01612832 (clinicaltrials.gov)

Full access

Andrew C. Vivas, Nir Shimony, Eric M. Jackson, Risheng Xu, George I. Jallo, Luis Rodriguez, Gerald F. Tuite, and Carolyn M. Carey

OBJECTIVE

Hydrocephalus associated with subdural hygromas is a rare complication after decompression of Chiari malformation type I (CM-I). There is no consensus for management of this complication. The authors present a series of 5 pediatric patients who underwent CM-I decompression with placement of a dural graft complicated by posterior fossa hygromas and hydrocephalus that were successfully managed nonoperatively.

METHODS

A retrospective review over the last 5 years of patients who presented with hydrocephalus and subdural hygromas following foramen magnum decompression with placement of a dural graft for CM-I was conducted at 2 pediatric institutions. Their preoperative presentation, perioperative hospital course, and postoperative re-presentation are discussed with attention to their treatment regimen and ultimate outcome. In addition to reporting these cases, the authors discuss all similar cases found in their literature review.

RESULTS

Over the last 5 years, the authors have encountered 194 pediatric cases of CM-I decompression with duraplasty equally distributed at the 2 institutions. Of those cases, 5 pediatric patients with a delayed postoperative complication involving hydrocephalus and subdural hygromas were identified. The 5 patients were managed nonoperatively with acetazolamide and high-dose dexamethasone; dosages of both drugs were adjusted to the age and weight of each patient. All patients were symptom free at follow-up and exhibited resolution of their pathology on imaging. Thirteen similar pediatric cases and 17 adult cases were identified in the literature review. Most reported cases were treated with CSF diversion or reoperation. There were a total of 4 cases previously reported with successful nonoperative management. Of these cases, only 1 case was reported in the pediatric population.

CONCLUSIONS

De novo hydrocephalus, in association with subdural hygromas following CM-I decompression, is rare. This presentation suggests that these complications after posterior fossa decompression with duraplasty can be treated with nonoperative medical management, therefore obviating the need for CSF diversion or reoperation.

Full access

David S. Hersh, Nir Shimony, Mari L. Groves, Gerald F. Tuite, George I. Jallo, Ann Liu, Tomas Garzon-Muvdi, Thierry A. G. M. Huisman, Ryan J. Felling, Joseph A. Kufera, and Edward S. Ahn

OBJECTIVE

Pediatric cerebral venous sinus thrombosis has been previously described in the setting of blunt head trauma; however, the population demographics, risk factors for thrombosis, and the risks and benefits of detection and treatment in this patient population are poorly defined. Furthermore, few reports differentiate between different forms of sinus pathology. A series of pediatric patients with skull fractures who underwent venous imaging and were diagnosed with intrinsic cerebral venous sinus thrombosis or extrinsic sinus compression is presented.

METHODS

The medical records of patients at 2 pediatric trauma centers were retrospectively reviewed. Patients who were evaluated for blunt head trauma from January 2003 to December 2013, diagnosed with a skull fracture, and underwent venous imaging were included.

RESULTS

Of 2224 pediatric patients with skull fractures following blunt trauma, 41 patients (2%) underwent venous imaging. Of these, 8 patients (20%) had intrinsic sinus thrombosis and 14 patients (34%) displayed extrinsic compression of a venous sinus. Three patients with intrinsic sinus thrombosis developed venous infarcts, and 2 of these patients were treated with anticoagulation. One patient with extrinsic sinus compression by a depressed skull fracture underwent surgical elevation of the fracture. All patients with sinus pathology were discharged to home or inpatient rehabilitation. Among patients who underwent follow-up imaging, the sinus pathology had resolved by 6 months postinjury in 80% of patients with intrinsic thrombosis as well as 80% of patients with extrinsic compression. All patients with intrinsic thrombosis or extrinsic compression had a Glasgow Outcome Scale score of 4 or 5 at their last follow-up.

CONCLUSIONS

In this series of pediatric trauma patients who underwent venous imaging for suspected thrombosis, the yield of detecting intrinsic thrombosis and/or extrinsic compression of a venous sinus was high. However, few patients developed venous hypertension or infarction and were subsequently treated with anticoagulation or surgical decompression of the sinus. Most had spontaneous resolution and good neurological outcomes without treatment. Therefore, in the setting of pediatric skull fractures after blunt injury, venous imaging is recommended when venous hypertension or infarction is suspected and anticoagulation is being considered. However, there is little indication for pervasive venous imaging after pediatric skull fractures, especially in light of the potential risks of CT venography or MR venography in the pediatric population and the unclear benefits of anticoagulation.

Restricted access

Nir Shimony, Travis Dailey, David Barrow, Anh Bui, Mohammad Hassan A. Noureldine, Meleine Martínez-Sosa, Luis F. Rodriguez, Carolyn M. Carey, Gerald F. Tuite, and George I. Jallo

OBJECTIVE

Pediatric traumatic brain injury (TBI) is the leading cause of death among children and is a significant cause of morbidity. However, the majority of injuries are mild (Glasgow Coma Scale score 13–15) without any need for neurosurgical intervention, and clinically significant neurological decline rarely occurs. Although the question of repeat imaging within the first 24 hours has been discussed in the past, the yield of short-term follow-up imaging has never been thoroughly described. In this paper, the authors focus on the yield of routine repeat imaging for pediatric mild TBI (mTBI) at the first clinic visit following hospital discharge.

METHODS

The authors conducted a retrospective review of patients with pediatric brain trauma who had been admitted to Johns Hopkins All Children’s Hospital (JHACH). Patients with mTBI were identified, and their presentation, hospital course, and imaging results were reviewed. Those pediatric patients with mTBI who had undergone no procedure during their initial admission (only conservative treatment) were eligible for inclusion in the study. Two distinct groups were identified: patients who underwent repeated imaging at their follow-up clinic visit and those who underwent only clinical evaluation. Each case was assessed on whether the follow-up imaging had changed the follow-up course.

RESULTS

Between 2010 and 2015, 725 patients with TBI were admitted to JHACH. Of those, 548 patients qualified for analysis (i.e., those with mTBI who received conservative treatment without any procedure and were seen in the clinic for follow-up evaluation within 8 weeks after the trauma). A total of 392 patients had only clinic follow-up, without any diagnostic imaging study conducted as part of their clinic visit, whereas the other 156 patients underwent repeat MRI. Only 1 patient had a symptomatic change and was admitted after undergoing imaging. For 30 patients (19.2%), it was decided after imaging to continue the neurosurgical follow-up, which is a change from the institutional paradigm after mTBI. None of these patients had a change in neurological status, and all had a good functional status. All of these patients had one more follow-up in the clinic with new MRI, and none of them required further follow-up.

CONCLUSIONS

Children with mTBI are commonly followed up in the ambulatory clinic setting. The authors believe that for children with mTBI, normal clinical examination, and no new symptoms, there is no need for routine ambulatory imaging since the clinical yield of such is relatively low.