Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Nida Fatima x
Clear All Modify Search
Free access

Nida Fatima, Antonio Meola, Erqi L. Pollom, Scott G. Soltys and Steven D. Chang

OBJECTIVE

Stereotactic radiosurgery (SRS) and stereotactic radiotherapy (SRT) have been used as a primary treatment or adjuvant to resection in the management of intracranial meningiomas (ICMs). The aim of this analysis is to compare the safety and long-term efficacy of SRS and SRT in patients with primary or recurrent ICMs.

METHODS

A systematic review of the literature comparing SRT and SRS in the same study was conducted using PubMed, the Cochrane Library, Google Scholar, and EMBASE from January 1980 to December 2018. Randomized controlled trials, case-control studies, and cohort studies (prospective and retrospective) analyzing SRS versus SRT for the treatment of ICMs in adult patients (age > 16 years) were included. Pooled and subgroup analyses were based on the fixed-effect model.

RESULTS

A total of 1736 patients from 12 retrospective studies were included. The treatment modality used was: 1) SRS (n = 306), including Gamma Knife surgery (n = 36), linear accelerator (n = 261), and CyberKnife (n = 9); or 2) SRT (n = 1430), including hypofractionated SRT (hFSRT, n = 268) and full-fractionated SRT (FSRT, n = 1162). The median age of patients at the time of treatment was 59 years. The median follow-up duration after treatment was 35.5 months. The median tumor volumes at the time of treatment with SRS, hFSRT, and FSRT were 2.84 cm3, 5.45 cm3, and 12.75 cm3, respectively. The radiographic tumor control at last follow-up was significantly worse in patients who underwent SRS than SRT (odds ratio [OR] 0.47, 95% confidence interval [CI] 0.27–0.82, p = 0.007) with 7% less volume of tumor shrinkage (OR 0.93, 95% CI 0.61–1.40, p = 0.72). Compared to SRS, the radiographic tumor control was better achieved by FSRT (OR 0.46, 95% CI 0.26–0.80, p = 0.006) than by hFSRT (OR 0.81, 95% CI 0.21–3.17, p = 0.76). Moreover, SRS leads to a significantly higher risk of clinical neurological worsening during follow-up (OR 2.07, 95% CI 1.06–4.06, p = 0.03) and of immediate symptomatic edema (OR 4.58, 95% CI 1.67–12.56, p = 0.003) with respect to SRT. SRT could produce a better progression-free survival at 4–10 years compared to SRS, but this was not statistically significant (p = 0.29).

CONCLUSIONS

SRS and SRT are both safe options in the management of ICMs. However, SRT carries a better radiographic tumor control rate and a lower incidence of posttreatment symptomatic worsening and symptomatic edema, with respect to SRS. However, further prospective studies are still needed to validate these results.

Restricted access

Nida Fatima, Victoria Y. Ding, Summer S. Han, Steven D. Chang and Antonio Meola

OBJECTIVE

Cavernous sinus meningioma (CSM) can affect visual function and require expeditious treatment to prevent permanent visual loss. Authors of this retrospective study sought to determine the factors associated with visual functional outcomes in CSM patients treated with surgery, stereotactic radiosurgery (SRS), or stereotactic radiation therapy (SRT), alone or in combination.

METHODS

Consecutive patients with CSM who had presented at an academic tertiary care hospital from 2000 to 2018 were identified through retrospective chart review. Visual function—visual eye deficit (VED), optic disc (OD) appearance, intraocular pressure (IOP), and extraocular movement (EOM)—was assessed before and after treatment for CSM. VED with visual acuity (VA) ≤ 20/200 and visual field defect ≥ −11 dB, pale OD appearance in the ipsilateral or contralateral eye, increased ipsilateral IOP, and/or EOM restriction were defined as a poor visual functional outcome. Multivariable logistic regression was used to evaluate the associations between pretreatment visual functional assessment and posttreatment visual outcomes.

RESULTS

The study cohort included 44 patients (73% female; median age 55 years), with a median clinical follow-up of 14 months. Ipsilateral VED improved, remained stable, or worsened, respectively, in 0%, 33.4%, and 66.6% of the patients after subtotal resection (STR) alone; in 52.6%, 31.6%, and 15.8% after STR plus radiation treatment; in 28.5%, 43.0%, and 28.5% after gross-total resection (GTR) alone; and in 56.3%, 43.7%, and 0% after radiation treatment (SRS or SRT) alone. Contralateral VED remained intact in all the patients after STR alone and those with radiation treatment (SRS or SRT) alone; however, it improved, remained stable, or worsened in 10.5%, 84.2%, and 5.3% after STR plus radiation treatment and in 43.0%, 28.5%, and 28.5% after GTR alone. EOM remained intact, fully recovered, remained stable, and worsened, respectively, in 0%, 50%, 50%, and 0% of the patients after STR alone; in 36.8%, 47.4%, 15.8%, and 0% of the patients after STR with radiation treatment; in 57.1%, 0%, 28.6%, and 14.3% of the patients after GTR alone; and in 56.2%, 37.5%, 6.3%, and 0% of the patients after radiation treatment (SRS or SRT) alone.

In multivariable analyses adjusted for age, tumor volume, and treatment modality, initial ipsilateral poor VED (OR 10.1, 95% CI 1.05–97.2, p = 0.04) and initial ipsilateral pale OD appearance (OR 21.1, 95% CI 1.6–270.5, p = 0.02) were associated with poor ipsilateral VED posttreatment. Similarly, an initial pale OD appearance (OR 15.7, 95% CI 1.3–199.0, p = 0.03), initial poor VED (OR 21.7, 95% CI 1.2–398.6, p = 0.03), and a higher IOP in the ipsilateral eye (OR 55.3, 95% CI 1.7–173.9, p = 0.02) were associated with an ipsilateral pale OD appearance posttreatment. Furthermore, a higher initial ipsilateral IOP (OR 35.9, 95% CI 3.3–400.5, p = 0.004) was indicative of a higher IOP in the ipsilateral eye posttreatment. Finally, initial restricted EOM was indicative of restricted EOM posttreatment (OR 20.6, 95% CI 18.7–77.0, p = 0.02).

CONCLUSIONS

Pretreatment visual functional assessment predicts visual outcomes in patients with CSM and can be used to identify patients at greater risk for vision loss.