Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Nesrin Sabha x
Clear All Modify Search
Restricted access

Roberto Jose Diaz, Roberto Rey Dios, Eyas M. Hattab, Kelly Burrell, Patricia Rakopoulos, Nesrin Sabha, Cynthia Hawkins, Gelareh Zadeh, James T. Rutka and Aaron A. Cohen-Gadol

OBJECT

Intravenous fluorescein sodium has been used during resection of high-grade gliomas to help the surgeon visualize tumor margins. Several studies have reported improved rates of gross-total resection (GTR) using high doses of fluorescein sodium under white light. The recent introduction of a fluorescein-specific camera that allows for high-quality intraoperative imaging and use of very low dose fluorescein has drawn new attention to this fluorophore. However, the ability of fluorescein to specifically stain glioma cells is not yet well understood.

METHODS

The authors designed an in vitro model to assess fluorescein uptake in normal human astrocytes and U251 malignant glioma cells. An in vivo experiment was also subsequently designed to study fluorescein uptake by intracranial U87 malignant glioma xenografts in male nonobese diabetic/severe combined immunodeficient mice. A genetically induced mouse glioma model was used to adjust for the possible confounding effect of an inflammatory response in the xenograft model. To assess the intraoperative application of this technology, the authors prospectively enrolled 12 patients who underwent fluorescein-guided resection of their high-grade gliomas using low-dose intravenous fluorescein and a microscope-integrated fluorescence module. Intraoperative fluorescent and nonfluorescent specimens at the tumor margins were randomly analyzed for histopathological correlation.

RESULTS

The in vitro and in vivo models suggest that fluorescein demarcation of glioma-invaded brain is the result of distribution of fluorescein into the extracellular space, most likely as a result of an abnormal blood-brain barrier. Glioblastoma tumor cell–specific uptake of fluorescein was not observed, and tumor cells appeared to mostly exclude fluorescein. For the 12 patients who underwent resection of their high-grade gliomas, the histopathological analysis of the resected specimens at the tumor margin confirmed the intraoperative fluorescent findings. Fluorescein fluorescence was highly specific (up to 90.9%) while its sensitivity was 82.2%. False negatives occurred due to lack of fluorescence in areas of diffuse, low-density cellular infiltration. Margins of contrast enhancement based on intraoperative MRI–guided StealthStation neuronavigation correlated well with fluorescent tumor margins. GTR of the contrast-enhancing area as guided by the fluorescent signal was achieved in 100% of cases based on postoperative MRI.

CONCLUSIONS

Fluorescein sodium does not appear to selectively accumulate in astrocytoma cells but in extracellular tumor cell-rich locations, suggesting that fluorescein is a marker for areas of compromised blood-brain barrier within high-grade astrocytoma. Fluorescein fluorescence appears to correlate intraoperatively with the areas of MR enhancement, thus representing a practical tool to help the surgeon achieve GTR of the enhancing tumor regions.

Free access

Sameer Agnihotri, Isabel Gugel, Marc Remke, Antje Bornemann, Georgios Pantazis, Stephen C. Mack, David Shih, Sanjay K. Singh, Nesrin Sabha, Michael D. Taylor, Marcos Tatagiba, Gelareh Zadeh and Boris Krischek

Object

Vestibular schwannomas (VS) are common benign tumors of the vestibular nerve that cause significant morbidity. The current treatment strategies for VS include surgery or radiation, with each treatment option having associated complications and side effects. The transcriptional landscape of schwannoma remains largely unknown.

Methods

In this study the authors performed gene-expression profiling of 49 schwannomas and 7 normal control vestibular nerves to identify tumor-specific gene-expression patterns. They also interrogated whether schwannomas comprise several molecular subtypes using several transcription-based clustering strategies. The authors also performed in vitro experiments testing therapeutic inhibitors of over-activated pathways in a schwannoma cell line, namely the PI3K/AKT/mTOR pathway.

Results

The authors identified over 4000 differentially expressed genes between controls and schwannomas with network analysis, uncovering proliferation and anti-apoptotic pathways previously not implicated in VS. Furthermore, using several distinct clustering technologies, they could not reproducibly identify distinct VS subtypes or significant differences between sporadic and germline NF2–associated schwannomas, suggesting that they are highly similar entities. The authors identified overexpression of PI3K/AKT/mTOR signaling networks in their geneexpression study and evaluated this pathway for therapeutic targeting. Testing the compounds BEZ235 and PKI-587, both novel dual inhibitors of PI3K and mTOR, attenuated tumor growth in a preclinical cell line model of schwannoma (HEI-293). In vitro findings demonstrated that pharmacological inhibition of the PI3K/AKT/mTOR pathway with next-generation compounds led to decreased cell viability and increased cell death.

Conclusions

These findings implicate aberrant activation of the PI3K/AKT/mTOR pathway as a molecular mechanism of pathogenesis in VS and suggest inhibition of this pathway as a potential treatment strategy.