Search Results

You are looking at 1 - 10 of 55 items for

  • Author or Editor: Neil R. Crawford x
  • Refine by Access: all x
Clear All Modify Search
Restricted access

Biomechanical characteristics of C1–2 cable fixations

Curtis A. Dickman, Neil R. Crawford, and Christopher G. Paramore

✓ The biomechanical characteristics of four different methods of C1–2 cable fixation were studied to assess the effectiveness of each technique in restoring atlantoaxial stability. Biomechanical testing was performed on the upper cervical spines of four human cadaveric specimens. Physiological range loading was applied to the atlantoaxial specimens and three-dimensional motion was analyzed with stereophotogrammetry. The load–deformation relationships and kinematics were measured, including the stiffness, the angular ranges of motion, the linear ranges of motion, and the axes of rotation.

Specimens were nondestructively tested in the intact state, after surgical destabilization, and after each of four different methods of cable fixation. Cable fixation techniques included the interspinous technique, the Brooks technique, and two variants of the Gallie technique. All specimens were tested immediately after fixation and again after the specimen was fatigued with 6000 cycles of physiological range torsional loading.

All four cable fixation methods were moderately flexible immediately; the different cable fixations allowed between 5° and 40° of rotational motion and between 0.6 and 7 mm of translational motion to occur at C1–2. The Brooks and interspinous methods controlled C1–2 motion significantly better than both of the Gallie techniques. The motion allowed by one of the Gallie techniques did not differ significantly from the motion of the unfixed destabilized specimens. All cable fixation techniques loosened after cyclic loading and demonstrated significant increases in C1–2 rotational and translational motions. The bone grafts shifted during cyclic loading, which reduced the effectiveness of the fixation.

The locations of the axes of rotation, which were unconstrained and mobile in the destabilized specimens, became altered with cable fixation. The C1–2 cables constrained motion by shifting the axes of rotation so that C-1 rotated around the fixed cable and graft site. After the specimen was fatigued, the axes of rotation became more widely dispersed but were usually still localized near the cable and graft site.

Adequate healing requires satisfactory control of C1–2 motion. Therefore, some adjunctive fixation is advocated to supplement the control of motion after C1–2 cable fixation (that is, a cervical collar, a halo brace, or rigid internal fixation with transarticular screws).

Restricted access

Biomechanics of Grade I degenerative lumbar spondylolisthesis. Part 1: In vitro model

Neil R. Crawford, Sedat Çagli, Volker K. H. Sonntag, and Curtis A. Dickman

Object. The authors sought to create and to evaluate an in vitro model of Grade I degenerative (closed-arch) spondylolisthesis.

Methods. The model of spondylolisthesis was created by two primary procedures: 1) resection of the disc; and 2) stripping of anterior and posterior longitudinal ligaments away from the vertebral bodies (VBs). In 13 vertebral levels obtained from three cadaveric lumbar spines, the tissues were resected sequentially in alternating order to determine the relative contribution of each resection to spinal instability. The entire specimens were loaded with nonconstraining torques and then individual levels were loaded with anteroposterior shear forces. The motion values were measured optoelectronically for each specimen at individual levels.

Conclusions. The integrity of the disc was more important than attachment of the ligaments to the VB, but the resection of both structures was necessary to achieve substantial destabilization. The structures of the spine are highly resilient, and destabilization is difficult to achieve without performing extensive resection. Using the techniques described in this paper to alter normal spines, a level of spinal instability (Grade I; 25% slippage) that may represent spondylolisthesis can be modeled in vitro.

Restricted access

Biomechanics of Grade I degenerative lumbar spondylolisthesis. Part 2: Treatment with threaded interbody cages/dowels and pedicle screws

Sedat Çagli, Neil R. Crawford, Volker K. H. Sonntag, and Curtis A. Dickman

Object. The authors sought to determine the biomechanical effectiveness of threaded interbody cages or dowels compared with that achieved using pedicle screw instrumentation in resisting Grade I lumbar spine degenerative spondylolisthesis.

Methods. Thirty-three levels obtained from seven cadaveric lumbar spines were instrumented with cages or dowels, pedicle screw/rod instrumentation, or both. Entire specimens were loaded with nonconstraining torques. Each level was loaded with anteroposterior shear forces while an optical system was used to measure the specimen's motion at individual levels.

Pedicle screw/rods outperformed interbody cages and dowels in treating spondylolisthesis. Cages or dowels alone provided only moderate biomechanical stability, and their effectiveness depended heavily on the integrity of the ligaments and remaining annulus, whereas the success of pedicle screw fixation relied predominantly on the integrity of the bone for solid fixation. Little biomechanical difference was demonstrated between cages and dowels; both devices were susceptible to loosening with cyclic fatigue.

Conclusions. Biomechanically, cages or dowels alone were suboptimal for treating lumbar spondylolisthesis, especially compared with pedicle screw/rods. Threaded cages or dowels used together with pedicle screws/rods created the most stable construct.

Full access

Biomechanical evaluation of the ProDisc-C stability following graded posterior cervical injury

Michael D. Staudt, Doron Rabin, Ali A. Baaj, Neil R. Crawford, and Neil Duggal

OBJECTIVE

There are limited data regarding the implications of revision posterior surgery in the setting of previous cervical arthroplasty (CA). The purpose of this study was to analyze segmental biomechanics in human cadaveric specimens with and without CA, in the context of graded posterior resection.

METHODS

Fourteen human cadaveric cervical spines (C3–T1 or C2–7) were divided into arthroplasty (ProDisc-C, n = 7) and control (intact disc, n = 7) groups. Both groups underwent sequential posterior element resections: unilateral foraminotomy, laminoplasty, and finally laminectomy. Specimens were studied sequentially in two different loading apparatuses during the induction of flexion-extension, lateral bending, and axial rotation.

RESULTS

Range of motion (ROM) after artificial disc insertion was reduced relative to that in the control group during axial rotation and lateral bending (13% and 28%, respectively; p < 0.05) but was similar during flexion and extension. With sequential resections, ROM increased by a similar magnitude following foraminotomy and laminoplasty in both groups. Laminectomy had a much greater effect: mean (aggregate) ROM during flexion-extension, lateral bending, and axial rotation was increased by a magnitude of 52% following laminectomy in the setting of CA, compared to an 8% increase without arthroplasty. In particular, laminectomy in the setting of CA introduced significant instability in flexion-extension, characterized by a 90% increase in ROM from laminoplasty to laminectomy, compared to a 16% increase in ROM from laminoplasty to laminectomy without arthroplasty (p < 0.05).

CONCLUSIONS

Foraminotomy and laminoplasty did not result in significant instability in the setting of CA, compared to controls. Laminectomy alone, however, resulted in a significant change in biomechanics, allowing for significantly increased flexion and extension. Laminectomy alone should be used with caution in the setting of previous CA.

Restricted access

A biomechanical evaluation of occipitocervical instrumentation: screw compared with wire fixation

R. John Hurlbert, Neil R. Crawford, Won Gyu Choi, and Curtis A. Dickman

Object. The purpose of this study was to compare cable techniques used in occipitocervical fixation with two types of screw fixation. The authors hypothesized that screw fixation would provide superior immobilization compared with cable methods.

Methods. Ten cadaveric specimens were prepared for biomechanical analyses by using standard techniques. Angular and linear displacement data were recorded from the occiput to C-6 with infrared optical sensors after conditioning runs. Specimens underwent retesting after fatiguing. Six methods of fixation were analyzed: Steinmann pin with and without C-1 incorporation; Cotrel-Dubousett horseshoe with and without C-1 incorporation; Mayfield loop with C1–2 transarticular screw fixation; and a custom-designed occipitocervical transarticular screw-plate system. Sublaminar techniques were extended to include C-3 in the fusion construct, whereas transarticular techniques incorporated the occiput, C-1, and C-2 only.

All methods of fixation provided significant immobilization in all specimens compared with the nonconstrained destabilized state. Despite incorporation of an additional vertebral segment, sublaminar techniques performed worse as a function of applied load than screw fixation techniques. Following fatiguing, these differences were more pronounced. The sublaminar techniques failed most prominently in flexion—extension and in axial rotation. On gross inspection, increased angular displacement associated with loosening of the sublaminar cables was observed.

Conclusion. Occipitocervical fixation can be performed using a variety of techniques; all bestow significant immobilization compared with the destabilized spine. All methods tested in this study were susceptible to fatigue and loss of reduction and were weakest in resisting vertical settling. Screw fixation of the occiput—C2 reduces the number of vertebral segments that are necessary to incorporate into the fusion construct while providing superior immobilization and resistance to fatigue and vertical settling compared with sublaminar methods.

Full access

Biomechanics of a posture-controlling cervical artificial disc: mechanical, in vitro, and finite-element analysis

Neil R. Crawford, Jeffery D. Arnett, Joshua A. Butters, Lisa A. Ferrara, Nikhil Kulkarni, Vijay K. Goel, and Neil Duggal

Different methods have been described by numerous investigators for experimentally assessing the kinematics of cervical artificial discs. However, in addition to understanding how artificial discs affect range of motion, it is also clinically relevant to understand how artificial discs affect segmental posture. The purpose of this paper is to describe novel considerations and methods for experimentally assessing cervical spine postural control in the laboratory. These methods, which include mechanical testing, cadaveric testing, and computer modeling studies, are applied in comparing postural biomechanics of a novel postural control arthroplasty (PCA) device versus standard ball-and-socket (BS) and ball-in-trough (BT) arthroplasty devices. The overall body of evidence from this group of tests supports the conclusion that the PCA device does control posture to a particular lordotic position, whereas BS and BT devices move freely through their ranges of motion.

Free access

Technique: open lumbar decompression and fusion with the Excelsius GPS robot

Corinna C. Zygourakis, A. Karim Ahmed, Samuel Kalb, Alex M. Zhu, Ali Bydon, Neil R. Crawford, and Nicholas Theodore

The Excelsius GPS (Globus Medical, Inc.) was approved by the FDA in 2017. This novel robot allows for real-time intraoperative imaging, registration, and direct screw insertion through a rigid external arm—without the need for interspinous clamps or K-wires. The authors present one of the first operative cases utilizing the Excelsius GPS robotic system in spinal surgery. A 75-year-old man presented with severe lower back pain and left leg radiculopathy. He had previously undergone 3 decompressive surgeries from L3 to L5, with evidence of instability and loss of sagittal balance. Robotic assistance was utilized to perform a revision decompression with instrumented fusion from L3 to S1. The usage of robotic assistance in spinal surgery may be an invaluable resource in minimally invasive cases, minimizing the need for fluoroscopy, or in those with abnormal anatomical landmarks.

The video can be found here: https://youtu.be/yVI-sJWf9Iw.

Restricted access

Feasibility of a resorbable anterior cervical graft containment plate

Christopher P. Ames, G. Bryan Cornwall, Neil R. Crawford, Eric Nottmeier, Robert H. Chamberlain, and Volker K. H. Sonntag

✓ In this article the authors review the history of anterior cervical plating for one- and two-level discectomy for degenerative disease and provide background justification for the design and testing of a cervical plate composed of a resorbable material. The design of the plate is discussed with special reference to modifications of its design and tools compared with metallic plates that are necessary because of the different mechanical properties of the less rigid material. The cadaveric and animal in vivo testing methodologies are described, and a novel testing method for reliably quantifying graft containment is also described. Data from a representative sample are presented. Advantages and disadvantages of resorbable plating are discussed.

Restricted access

Biomechanical comparison of C1–2 posterior fixation techniques

Jonathan S. Hott, James J. Lynch, Robert H. Chamberlain, Volker K. H. Sonntag, and Neil R. Crawford

Object. In a nondestructive, repeated-measures in vitro flexibility experiment, the authors compared the acute stability of C1–2 after placement of C-1 lateral mass and C-2 pars interarticularis (LC1—PC2) instrumentation with that of C1–2 transarticular screw fixation.

Methods. The effect of C-1 laminectomy and C1–2 interspinous cable/graft fixation on LC1—PC2 stability was studied. Screw pullout strengths were also compared. Seven human cadaveric occiput—C3 specimens were loaded nondestructively with pure moments while measuring nonconstrained atlantoaxial motion. Specimens were tested with graft alone, LC1—PC2 alone, LC1—PC2 combined with C-1 laminectomy, and graft-augmented LC1—PC2. Interspinous cable/graft fixation significantly enhanced LC1—PC2 stability during extension. After C-1 laminectomy, the LC1—PC2 construct allowed increased motion during flexion and extension. There was no significant difference in lax zone or range of motion between LC1—PC2 fixation and transarticular screw fixation, but graft-assisted transarticular screws yielded a significantly smaller stiff zone during extension. The difference in pullout resistance between C-1 lateral mass screws and C-2 pars interarticularis screws was insignificant. The LC1—PC2 region restricted motion to within the normal range during all loading modes. Atlantal laminectomy reduced LC1—PC2 stability during flexion and extension.

Conclusions. The instrumentation-augmented LC1—PC2 construct performed biomechanically similarly to the C1–2 transarticular screw fixation. The LC1—PC2 construct resisted flexion, lateral bending, and axial rotation well. The weakness of the LC1—PC2 fixation in resisting extension can be overcome by adding an interspinous graft to the construct.

Restricted access

Biomechanical evaluation of a bioresorbable odontoid screw

Christopher P. Ames, Neil R. Crawford, Robert H. Chamberlain, Vivek Deshmukh, Belma Sadikovic, and Volker K. H. Sonntag

Object. The authors tested the ability of a resorbable cannulated lag screw composed of a polylactide copolymer to repair Type II odontoid fractures. The resorbable screw was evaluated for its ability to restore strength and stiffness to the fractured odontoid process compared with traditional titanium screws.

Methods. Type II odontoid fractures were created in 14 human cadaveric C-2 vertebrae by applying a posterolaterally directed load and piston displacement was measured. Seven of these specimens were repaired using metal screws and seven were repaired using resorbable screws. Specimens were reinjured using the same mechanism as the initial fracture. Values of ultimate strength and stiffness during failure were statistically compared between metal and resorbable screws and between initial fracture and reinjury.

Conclusions. The stiffness and ultimate strength during initial fracture were significantly greater than those during reinjury in specimens repaired using resorbable screws or titanium screws (p < 0.001). The resorbable and titanium screws both restored 31% of the initial ultimate strength of the intact specimen (p = 0.95). The stiffness of the fractured odontoid process was restored to 15 and 23% of its initial value by repair with resorbable and metal screws, respectively (p = 0.07). The mode of failure in resorbable screws was usually breakage or bending, whereas that in metal screws was consistently cutout of the proximal shaft of the screw through the anterior C-2 vertebral body.