Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Nduka Amankulor x
Clear All Modify Search
Restricted access

Ozlem Guzeloglu-Kayisli, Umit A. Kayisli, Nduka M. Amankulor, Jennifer R. Voorhees, Ozgun Gokce, Michael L. Diluna, Maxwell S. H. Laurans, Guven Luleci and Murat Gunel

Object. Molecular genetic studies of cerebral cavernous malformation (CCM) have identified three loci, CCM1–3, that can lead to CCM when mutated. Examination of the CCM1 locus established KRIT1 (Krev1 Interaction Trapped gene 1) as the CCM1 gene. Despite the identification of KRIT1 as the gene mutated in CCM1, little has been learned regarding its function. The authors recently demonstrated specific KRIT1 expression in endothelial cells. Based on this result and the fact that the CCM phenotype features defects in microvasculature, we hypothesized that KRIT1 may take an active part in normal angiogenesis.

Methods. In this study, the authors investigated the spatial and temporal expression of KRIT1 during normal vessel development and maturation by examining KRIT1 protein in both in vitro and in vivo angiogenic systems with the use of postconfluent endothelial cell cultures along with placental tissues from different developmental stages.

Conclusions. The results demonstrate that KRIT1 is expressed during capillary-like tube formation in the early stages of angiogenesis in vitro. Histological examination of placental tissue, a well-established in vivo model of angiogenesis, shows KRIT1 expression in active angiogenic and vasculogenic areas of the immature placental villi. As the placenta matures, KRIT1 expression is restricted to microvascular and small arterial endothelial cells with little or no expression seen in the intima of large vessels. It can therefore be concluded that KRIT1 is expressed during early angiogenesis by endothelial cells and may play a key role in vessel formation and/or development.

Full access

Ronny Kalash, Scott M. Glaser, John C. Flickinger, Steven Burton, Dwight E. Heron, Peter C. Gerszten, Johnathan A. Engh, Nduka M. Amankulor and John A. Vargo

OBJECTIVE

Akin to the nonoperative management of benign intracranial tumors, stereotactic body radiation therapy (SBRT) has emerged as a nonoperative treatment option for noninfiltrative primary spine tumors such as meningioma and schwannoma. The majority of initial series used higher doses of 16–24 Gy in 1–3 fractions. The authors hypothesized that lower doses (such as 12–13 Gy in 1 fraction) might provide an efficacy similar to that found with the dose de-escalation commonly used for intracranial radiosurgery to treat acoustic neuroma or meningioma and with a lower risk of toxicity.

METHODS

The authors identified 38 patients in a prospectively maintained institutional radiosurgery database who were treated with definitive SBRT for a total of 47 benign primary spine tumors between 2004 and 2016. SBRT consisted of 9–21 Gy in 1–3 fractions using the CyberKnife (n = 11 [23%]), Synergy S (n = 21 [45%]), or TrueBeam (n = 15 [32%]) radiosurgery platform. For a comparison of SBRT doses, patients were dichotomized into 1 of 2 groups (low-dose or high-dose SBRT) using a cutoff biologically effective dose (BED10Gy) of 30 Gy. Tumor control was calculated from the date of SBRT to the last follow-up using Kaplan-Meier survival analysis, with comparisons between groups completed using a log-rank method. To account for potential indication bias, a propensity score analysis was completed based on the conditional probabilities of SBRT dose selection. Toxicity was graded using Common Terminology Criteria for Adverse Events version 4.0 with a focus on grade 3+ toxicity and the incidence of pain flare.

RESULTS

For the 38 patients, the most common histological findings were meningioma (15 patients), schwannoma (13 patients), and hemangioblastoma (7 patients). The median age at SBRT was 58 years (range 25–91 years). The 47 treated lesions were located in the cervical (n = 18), thoracic (n = 19), or lumbosacral (n = 10) spine. Five (11%) lesions were lost to follow-up after SBRT. The median follow-up duration for the remaining 42 lesions was 54 months (range 1.2–133 months). Six (16%) patients (with a total of 8 lesions) experienced pain flare after SBRT; no significant predictor of pain flare was identified. No grade 3+ acute- or late-onset complication was noted. The 5-year local control rate was 76% (95% CI 61%–91%). No significant difference in local control according to dose, fractionation, previous radiation, surgery, tumor histology, age, treatment platform, planning target volume, or spine level treated was found. The 5-year local control rates for low- and high-dose treatments were 73% (95% CI 53%–93%) and 83% (95% CI 61%–100%) (p = 0.52). In propensity score–adjusted multivariable analysis, no difference in local control was identified (HR 0.30, 95% CI 0.02–5.40; p = 0.41).

CONCLUSIONS

Long-term follow-up of patients treated with SBRT for benign spinal lesions revealed no significant difference between low-dose (BED10Gy ≤ 30) and high-dose SBRT in local control, pain-flare rate, or long-term toxicity.

Restricted access

Mark W. Youngblood, Daniel Duran, Julio D. Montejo, Chang Li, Sacit Bulent Omay, Koray Özduman, Amar H. Sheth, Amy Y. Zhao, Evgeniya Tyrtova, Danielle F. Miyagishima, Elena I. Fomchenko, Christopher S. Hong, Victoria E. Clark, Maximilien Riche, Matthieu Peyre, Julien Boetto, Sadaf Sohrabi, Sarah Koljaka, Jacob F. Baranoski, James Knight, Hongda Zhu, M. Necmettin Pamir, Timuçin Avşar, Türker Kilic, Johannes Schramm, Marco Timmer, Roland Goldbrunner, Ye Gong, Yaşar Bayri, Nduka Amankulor, Ronald L. Hamilton, Kaya Bilguvar, Irina Tikhonova, Patrick R. Tomak, Anita Huttner, Matthias Simon, Boris Krischek, Michel Kalamarides, E. Zeynep Erson-Omay, Jennifer Moliterno and Murat Günel

OBJECTIVE

Recent large-cohort sequencing studies have investigated the genomic landscape of meningiomas, identifying somatic coding alterations in NF2, SMARCB1, SMARCE1, TRAF7, KLF4, POLR2A, BAP1, and members of the PI3K and Hedgehog signaling pathways. Initial associations between clinical features and genomic subgroups have been described, including location, grade, and histology. However, further investigation using an expanded collection of samples is needed to confirm previous findings, as well as elucidate relationships not evident in smaller discovery cohorts.

METHODS

Targeted sequencing of established meningioma driver genes was performed on a multiinstitution cohort of 3016 meningiomas for classification into mutually exclusive subgroups. Relevant clinical information was collected for all available cases and correlated with genomic subgroup. Nominal variables were analyzed using Fisher’s exact tests, while ordinal and continuous variables were assessed using Kruskal-Wallis and 1-way ANOVA tests, respectively. Machine-learning approaches were used to predict genomic subgroup based on noninvasive clinical features.

RESULTS

Genomic subgroups were strongly associated with tumor locations, including correlation of HH tumors with midline location, and non-NF2 tumors in anterior skull base regions. NF2 meningiomas were significantly enriched in male patients, while KLF4 and POLR2A mutations were associated with female sex. Among histologies, the results confirmed previously identified relationships, and observed enrichment of microcystic features among “mutation unknown” samples. Additionally, KLF4-mutant meningiomas were associated with larger peritumoral brain edema, while SMARCB1 cases exhibited elevated Ki-67 index. Machine-learning methods revealed that observable, noninvasive patient features were largely predictive of each tumor’s underlying driver mutation.

CONCLUSIONS

Using a rigorous and comprehensive approach, this study expands previously described correlations between genomic drivers and clinical features, enhancing our understanding of meningioma pathogenesis, and laying further groundwork for the use of targeted therapies. Importantly, the authors found that noninvasive patient variables exhibited a moderate predictive value of underlying genomic subgroup, which could improve with additional training data. With continued development, this framework may enable selection of appropriate precision medications without the need for invasive sampling procedures.