Search Results

You are looking at 1 - 9 of 9 items for

  • Author or Editor: Naoki Kagawa x
Clear All Modify Search
Restricted access

Hideo Otsuki, Susumu Nakatani, Mami Yamasaki, Akira Kinoshita, Fuminori Iwamoto and Naoki Kagawa

✓ The result of combining the ultrasound Coded Excitation method and an ultrasound contrast agent (UCA), the Coded Harmonic Angio (CHA) technique provides arterial images with exceptional spatial, temporal, and contrast resolution that are comparable to those produced by conventional digital subtraction angiography. The authors report on their experience with intraoperative ultrasound arteriography performed using the transdural CHA technique in three patients: one harboring a meningioma, another with a middle cerebral artery aneurysm, and a third with an arteriovenous malformation. The present study demonstrates how intraoperative cerebral ultrasound arteriography can be applied to assess the adequacy of neurovascular procedures without the presence of an experienced operator.

Restricted access

Ryuichi Hirayama, Yasunori Fujimoto, Masao Umegaki, Naoki Kagawa, Manabu Kinoshita, Naoya Hashimoto and Toshiki Yoshimine

Object

Existing training methods for neuroendoscopic surgery have mainly emphasized the acquisition of anatomical knowledge and procedures for operating an endoscope and instruments. For laparoscopic surgery, various training systems have been developed to teach handling of an endoscope as well as the manipulation of instruments for speedy and precise endoscopic performance using both hands. In endoscopic endonasal surgery (EES), especially using a binostril approach to the skull base and intradural lesions, the learning of more meticulous manipulation of instruments is mandatory, and it may be necessary to develop another type of training method for acquiring psychomotor skills for EES. Authors of the present study developed an inexpensive, portable personal trainer using a webcam and objectively evaluated its utility.

Methods

Twenty-five neurosurgeons volunteered for this study and were divided into 2 groups, a novice group (19 neurosurgeons) and an experienced group (6 neurosurgeons). Before and after the exercises of set tasks with a webcam box trainer, the basic endoscopic skills of each participant were objectively assessed using the virtual reality simulator (LapSim) while executing 2 virtual tasks: grasping and instrument navigation. Scores for the following 11 performance variables were recorded: instrument time, instrument misses, instrument path length, and instrument angular path (all of which were measured in both hands), as well as tissue damage, max damage, and finally overall score. Instrument time was indicated as movement speed; instrument path length and instrument angular path as movement efficiency; and instrument misses, tissue damage, and max damage as movement precision.

Results

In the novice group, movement speed and efficiency were significantly improved after the training. In the experienced group, significant improvement was not shown in the majority of virtual tasks. Before the training, significantly greater movement speed and efficiency were demonstrated in the experienced group, but no difference in movement precision was shown between the 2 groups. After the training, no significant differences were shown between the 2 groups in the majority of the virtual tasks. Analysis revealed that the webcam trainer improved the basic skills of the novices, increasing movement speed and efficiency without sacrificing movement precision.

Conclusions

Novices using this unique webcam trainer showed improvement in psychomotor skills for EES. The authors believe that training in terms of basic endoscopic skills is meaningful and that the webcam training system can play a role in daily off-the-job training for EES.

Restricted access

Ryuichi Hirayama, Manabu Kinoshita, Hideyuki Arita, Naoki Kagawa, Haruhiko Kishima, Naoya Hashimoto, Yasunori Fujimoto and Toshiki Yoshimine

OBJECTIVE

In the present study the authors aimed to determine preferred locations of meningiomas by avoiding descriptive analysis and instead using voxel-based lesion mapping and 3D image-rendering techniques.

METHODS

Magnetic resonance images obtained in 248 treatment-naïve meningioma patients with 260 lesions were retrospectively and consecutively collected. All images were registered to a 1-mm isotropic, high-resolution, T1-weighted brain atlas provided by the Montreal Neurological Institute (the MNI152), and a lesion frequency map was created, followed by 3D volume rendering to visualize the preferred locations of meningiomas in 3D.

RESULTS

The 3D lesion frequency map clearly showed that skull base structures such as parasellar, sphenoid wing, and petroclival regions were commonly affected by the tumor. The middle one-third of the superior sagittal sinus was most commonly affected in parasagittal tumors. Substantial lesion accumulation was observed around the leptomeninges covering the central sulcus and the sylvian fissure, with very few lesions observed at the frontal, parietal, and occipital convexities.

CONCLUSIONS

Using an objective visualization method, meningiomas were shown to be located around the middle third of the superior sagittal sinus, the perisylvian convexity, and the skull base. These observations, which are in line with previous descriptive analyses, justify further use of voxel-based lesion mapping techniques to help understand the biological nature of this disease.

Restricted access

Tetsuo Hashiba, Naoya Hashimoto, Shuichi Izumoto, Tsuyoshi Suzuki, Naoki Kagawa, Motohiko Maruno, Amami Kato and Toshiki Yoshimine

Object

Due to advances in neuroimaging and the increasing use of imaging to screen for brain disease (“brain checkups”), meningiomas are now often detected as an incidental finding. The natural history of these asymptomatic meningiomas remains unclear, however. In this study, the authors investigated the natural history and growth pattern of incidentally detected meningiomas using serial volumetric assessment and regression analysis.

Methods

In 70 patients with incidentally discovered meningiomas who underwent follow-up for longer than 1 year, tumor volumes were calculated volumetrically at each follow-up visit, and tumor growth was determined. In patients with tumor growth, regression analysis was performed to determine the pattern of growth.

Results

Forty-four tumors exhibited growth and 26 did not. In a regression analysis, 16 of the tumors that grew followed an exponential growth pattern and 15 exhibited linear growth patterns. The presence of calcification was the only imaging characteristic that significantly distinguished the group with tumor growth from that without, although no radiological characteristics significantly distinguished the exponential growth group from the linear growth group. Two patients with obvious tumor growth underwent surgical removal and the pathological specimens extracted showed a high proliferative potential.

Conclusions

The authors found that incidentally discovered meningiomas did not always follow an exponential growth pattern but often exhibited more complex patterns of growth. Serial monitoring of tumor volumes and regression analysis may reveal the growth pattern of incidental meningiomas and provide information useful for determining treatment strategy.

Restricted access

Manabu Kinoshita, Hideyuki Arita, Yoshiko Okita, Naoki Kagawa, Haruhiko Kishima, Naoya Hashimoto, Hisashi Tanaka, Yoshiyuki Watanabe, Eku Shimosegawa, Jun Hatazawa, Yasunori Fujimoto and Toshiki Yoshimine

OBJECTIVE

Diffusion MRI is attracting increasing interest for tissue characterization of gliomas, especially after the introduction of antiangiogenic therapy to treat malignant gliomas. The goal of the current study is to elucidate the actual magnitude of the correlation between diffusion MRI and cell density within the tissue. The obtained results were further extended and compared with metabolic imaging with 11C-methionine (MET) PET.

METHODS

Ninety-eight tissue samples from 37 patients were stereotactically obtained via an intraoperative neuronavigation system. Diffusion tensor imaging (DTI) and MET PET were performed as routine presurgical imaging studies for these patients. DTI was converted into fractional anisotropy (FA) and apparent diffusion coefficient (ADC) maps, and MET PET images were registered to Gd-administered T1-weighted images that were used for navigation. Metrics of FA, ADC, and tumor-to-normal tissue ratio of MET PET along with relative values of FA (rFA) and ADC (rADC) compared with normal-appearing white matter were correlated with cell density of the stereotactically obtained tissues.

RESULTS

rADC was significantly lower in lesions obtained from Gd-enhancing lesions than from nonenhancing lesions. Although rADC showed a moderate but statistically significant negative correlation with cell density (p = 0.010), MET PET showed a superb positive correlation with cell density (p < 0.0001). On the other hand, rFA showed little correlation with cell density.

CONCLUSIONS

The presented data validated the use of rADC for estimating the treatment response of gliomas but also caution against overestimating its limited accuracy compared with MET PET.

Full access

Naoya Hashimoto, Carter S. Rabo, Yoshiko Okita, Manabu Kinoshita, Naoki Kagawa, Yasunori Fujimoto, Eiichi Morii, Haruhiko Kishima, Motohiko Maruno, Amami Kato and Toshiki Yoshimine

Object

The precise natural history of incidentally discovered meningiomas (IDMs) remains unknown. It has been reported that for symptomatic meningiomas, tumor location can be used to predict growth. As to whether the same is true for IDMs has not been reported. This study aims to answer this question and provide biological evidence for this assumption by extending the study to involve symptomatic cases.

Methods

A total of 113 IDMs were analyzed by fine volumetry. A comparison of growth rates and patterns between skull base and non–skull base IDMs was made. Subsequently, materials obtained from 210 patients with symptomatic meningiomas who were treated in the authors' hospital during the same period were included for a biological comparison between skull base and non–skull base tumors using the MIB-1 index.

Results

The 110 patients with IDMs included 93 females and 17 males, with a mean follow-up period of 46.9 months. There were 38 skull base (34%) and 75 non–skull base (66%) meningiomas. Forty-two (37%) did not exhibit growth of more than 15% of the volume, whereas 71 (63%) showed growth. Only 15 (39.5%) of 38 skull base meningiomas showed growth, whereas 56 (74.7%) of 75 non–skull base meningiomas showed growth (p = 0.0004). In the 71 IDMs (15 skull base and 56 non–skull base), there was no statistical difference between the 2 groups in terms of mean age, sex, follow-up period, or initial tumor volume. However, the percentage of growth (p = 0.002) was significantly lower and the doubling time (p = 0.008) was significantly higher in the skull base than in the non–skull base tumor group. In subsequently analyzed materials from 94 skull base and 116 non–skull base symptomatic meningiomas, the mean MIB-1 index for skull base tumors was markedly low (2.09%), compared with that for non–skull base tumors (2.74%; p = 0.013).

Conclusions

Skull base IDMs tend not to grow, which is different from non–skull base tumors. Even when IDMs grow, the rate of growth is significantly lower than that of non–skull base tumors. The same conclusion with regard to biological behavior was confirmed in symptomatic cases based on MIB-1 index analyses. The authors' findings may impact the understanding of the natural history of IDMs, as well as strategies for management and treatment of IDMs and symptomatic meningiomas.

Restricted access

Yasuyoshi Chiba, Manabu Kinoshita, Yoshiko Okita, Akihiro Tsuboi, Kayako Isohashi, Naoki Kagawa, Yasunori Fujimoto, Yusuke Oji, Yoshihiro Oka, Eku Shimosegawa, Satoshi Morita, Jun Hatazawa, Haruo Sugiyama, Naoya Hashimoto and Toshiki Yoshimine

Object

Immunotherapy targeting the Wilms tumor 1 (WT1) gene product is a promising treatment modality for patients with malignant gliomas, and there have been reports of encouraging results. It has become clear, however, that Gd-enhanced MR imaging does not reflect prognosis, thereby necessitating a more robust imaging evaluation system for monitoring response to WT1 immunotherapy. To meet this demand, the authors performed a voxel-wise parametric response map (PRM) analysis of 11C-methionine PET (MET-PET) in WT1 immunotherapy and compared the data with the overall survival after initiation of WT1 immunotherapy (OSWT1).

Methods

Fourteen patients with recurrent malignant glioma were included in the study, and OSWT1 was compared with: 1) volume and length change in the contrast area of the tumor on Gd-enhanced MR images; 2) change in maximum uptake of 11C-methionine; and 3) a more detailed voxel-wise PRM analysis of MET-PET pre- and post-WT1 immunotherapy.

Results

The PRM analysis was able to identify the following 3 areas within the tumor core: 1) area with no change in 11C-methionine uptake pre- and posttreatment; 2) area with increased 11C-methionine uptake posttreatment (PRM+MET); and 3) area with decreased 11C-methionine uptake posttreatment. While the results of Gd-enhanced MR imaging volumetric and conventional MET-PET analysis did not correlate with OSWT1 (p = 0.270 for Gd-enhanced MR imaging length, p = 0.960 for Gd-enhanced MR imaging volume, and p = 0.110 for MET-PET), the percentage of PRM+MET area showed excellent correlation (p = 0.008) with OSWT1.

Conclusions

This study describes the limited value of Gd-enhanced MR imaging and highlights the potential of voxel-wise PRM analysis of MET-PET for monitoring treatment response in immunotherapy for malignant gliomas. Clinical trial registration no.: UMIN000002001.

Restricted access

Takero Hirata, Manabu Kinoshita, Keisuke Tamari, Yuji Seo, Osamu Suzuki, Nobuhide Wakai, Takamune Achiha, Toru Umehara, Hideyuki Arita, Naoki Kagawa, Yonehiro Kanemura, Eku Shimosegawa, Naoya Hashimoto, Jun Hatazawa, Haruhiko Kishima, Teruki Teshima and Kazuhiko Ogawa

OBJECTIVE

It is important to correctly and precisely define the target volume for radiotherapy (RT) of malignant glioma. 11C-methionine (MET) positron emission tomography (PET) holds promise for detecting areas of glioma cell infiltration: the authors’ previous research showed that the magnitude of disruption of MET and 18F-fluorodeoxyglucose (FDG) uptake correlation (decoupling score [DS]) precisely reflects glioma cell invasion. The purpose of the present study was to analyze volumetric and geometrical properties of RT target delineation based on DS and compare them with those based on MRI.

METHODS

Twenty-five patients with a diagnosis of malignant glioma were included in this study. Three target volumes were compared: 1) contrast-enhancing core lesions identified by contrast-enhanced T1-weighted images (T1Gd), 2) high-intensity lesions on T2-weighted images, and 3) lesions showing high DS (DS ≥ 3; hDS). The geometrical differences of these target volumes were assessed by calculating the probabilities of overlap and one encompassing the other. The correlation of geometrical features of RT planning and recurrence patterns was further analyzed.

RESULTS

The analysis revealed that T1Gd with a 2.0-cm margin was able to cover the entire high DS area only in 6 (24%) patients, which indicates that microscopic invasion of glioma cells often extended more than 2.0 cm beyond a Gd-enhanced core lesion. Insufficient coverage of high DS regions with RT target volumes was suggested to be a risk for out-of-field recurrence. Higher coverage of hDS by T1Gd with a 2-cm margin (i.e., higher values of “[T1Gd + 2 cm]/hDS”) had a trend to positively impact overall and progression-free survival. Cox regression analysis demonstrated that low coverage of hDS by T1Gd with a 2-cm margin was predictive of disease recurrence outside the Gd-enhanced core lesion, indicative of out-of-field reoccurrence.

CONCLUSIONS

The findings of this study indicate that MRI is inadequate for target delineation for RT in malignant glioma treatment. Expanding the treated margins substantially beyond the MRI-based target volume may reduce the risk of undertreatment, but it may also result in unnecessary irradiation of uninvolved regions. As MET/FDG PET-DS seems to provide more accurate information for target delineation than MRI in malignant glioma treatment, this method should be further evaluated on a larger scale.

Restricted access

Shuichi Izumoto, Akihiro Tsuboi, Yoshihiro Oka, Tsuyoshi Suzuki, Tetsuo Hashiba, Naoki Kagawa, Naoya Hashimoto, Motohiko Maruno, Olga A. Elisseeva, Toshiaki Shirakata, Manabu Kawakami, Yusuke Oji, Sumiyuki Nishida, Satoshi Ohno, Ichiro Kawase, Jun Hatazawa, Shin-ichi Nakatsuka, Katsuyuki Aozasa, Satoshi Morita, Junichi Sakamoto, Haruo Sugiyama and Toshiki Yoshimine

Object

The object of this study was to investigate the safety and clinical responses of immunotherapy targeting the WT1 (Wilms tumor 1) gene product in patients with recurrent glioblastoma multiforme (GBM).

Methods

Twenty-one patients with WT1/HLA-A*2402–positive recurrent GBM were included in a Phase II clinical study of WT1 vaccine therapy. In all patients, the tumors were resistant to standard therapy. Patients received intra-dermal injections of an HLA-A*2402–restricted, modified 9-mer WT1 peptide every week for 12 weeks. Tumor size, which was obtained by measuring the contrast-enhanced area on magnetic resonance images, was determined every 4 weeks. The responses were analyzed according to Response Evaluation Criteria in Solid Tumors (RECIST) 12 weeks after the initial vaccination. Patients who achieved an effective response continued to be vaccinated until tumor progression occurred. Progression-free survival and overall survival after initial WT1 treatment were estimated.

Results

The protocol was well tolerated; only local erythema occurred at the WT1 vaccine injection site. The clinical responses were as follows: partial response in 2 patients, stable disease in 10 patients, and progressive disease in 9 patients. No patient had a complete response. The overall response rate (cases with complete or partial response) was 9.5%, and the disease control rate (cases with complete or partial response as well as those in which disease was stable) was 57.1%. The median progression-free survival (PFS) period was 20.0 weeks, and the 6-month (26-week) PFS rate was 33.3%.

Conclusions

Although a small uncontrolled nonrandomized trial, this study showed that WT1 vaccine therapy for patients with WT1/HLA-A*2402–positive recurrent GBM was safe and produced a clinical response. Based on these results, further clinical studies of WT1 vaccine therapy in patients with malignant glioma are warranted.