Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: N. U. Farrukh Hameed x
  • Refine by Access: all x
Clear All Modify Search
Restricted access

Yuyao Zhou, Zehao Zhao, Jie Zhang, N. U. Farrukh Hameed, Fengping Zhu, Rui Feng, Xiaoluo Zhang, Junfeng Lu, and Jinsong Wu

OBJECTIVE

Speech arrest is a common but crucial negative motor response (NMR) recorded during intraoperative brain mapping. However, recent studies have reported nonspeech-specific NMR sites in the ventral precentral gyrus (vPrCG), where stimulation halts both speech and ongoing hand movement. The aim of this study was to investigate the spatial relationship between speech-specific NMR sites and nonspeech-specific NMR sites in the lateral frontal cortex.

METHODS

In this prospective cohort study, an intraoperative mapping strategy was designed to identify positive motor response (PMR) sites and NMR sites in 33 consecutive patients undergoing awake craniotomy for the treatment of left-sided gliomas. Patients were asked to count, flex their hands, and simultaneously perform these two tasks to map NMRs. Each site was plotted onto a standard atlas and further analyzed. The speech and hand motor arrest sites in the supplementary motor area of 2 patients were resected. The 1- and 3-month postoperative language and motor functions of all patients were assessed.

RESULTS

A total of 91 PMR sites and 72 NMR sites were identified. NMR and PMR sites were anteroinferiorly and posterosuperiorly distributed in the precentral gyrus, respectively. Three distinct NMR sites were identified: 24 pure speech arrest (speech-specific NMR) sites (33.33%), 7 pure hand motor arrest sites (9.72%), and 41 speech and hand motor arrest (nonspeech-specific NMR) sites (56.94%). Nonspeech-specific NMR sites and speech-specific NMR sites were dorsoventrally distributed in the vPrCG. For language function, 1 of 2 patients in the NMA resection group had language dysfunction at the 1-month follow-up but had recovered by the 3-month follow-up. All patients in the NMA resection group had fine motor dysfunction at the 1- and 3-month follow-ups.

CONCLUSIONS

The study results demonstrated a functional segmentation of speech-related NMRs in the lateral frontal cortex and that most of the stimulation-induced speech arrest sites are not specific to speech. A better understanding of the spatial distribution of speech-related NMR sites will be helpful in surgical planning and intraoperative mapping and provide in-depth insight into the motor control of speech production.

Free access

Zhengda Yu, N. U. Farrukh Hameed, Nan Zhang, Bin Wu, Jie Zhang, Junfeng Lu, Tianming Qiu, Dongxiao Zhuang, Hong Chen, and Jinsong Wu

Resection of insular tumors in the dominant hemisphere poses a significant risk of postoperative motor and language deficits. The authors present a case in which intraoperative awake mapping and multi-modal imaging was used to help preserve function while resecting a dominant insular glioma. The patient, a 55-year-old man, came to the clinic after experiencing sudden onset of numbness in the right limbs for 4 months. Preoperative MRI revealed a nonenhancing lesion in the left insular lobe. Gross-total tumor resection was achieved through the transcortical approach, and the patient recovered without language or motor deficits. Informed patient consent was obtained.

The video can be found here: https://youtu.be/gFky09ekmzw.

Full access

N. U. Farrukh Hameed, Tianming Qiu, Dongxiao Zhuang, Junfeng Lu, Zhengda Yu, Shuai Wu, Bin Wu, Fengping Zhu, Yanyan Song, Hong Chen, and Jinsong Wu

OBJECTIVE

Insular lobe gliomas continue to challenge neurosurgeons due to their complex anatomical position. Transcortical and transsylvian corridors remain the primary approaches for reaching the insula, but the adoption of one technique over the other remains controversial. The authors analyzed the transcortical approach of resecting insular gliomas in the context of patient tumor location based on the Berger-Sinai classification, achievable extents of resection (EORs), overall survival (OS), and postsurgical neurological outcome.

METHODS

The authors studied 255 consecutive cases of insular gliomas that underwent transcortical tumor resection in their division. Tumor molecular pathology, location, EOR, postoperative neurological outcome for each insular zone, and the accompanying OS were incorporated into the analysis to determine the value of this surgical approach.

RESULTS

Lower-grade insular gliomas (LGGs) were more prevalent (63.14%). Regarding location, giant tumors (involving all insular zones) were most prevalent (58.82%) followed by zone I+IV (anterior) tumors (20.39%). In LGGs, tumor location was an independent predictor of survival (p = 0.003), with giant tumors demonstrating shortest patient survival (p = 0.003). Isocitrate dehydrogenase 1 (IDH1) mutation was more likely to be associated with giant tumors (p < 0.001) than focal tumors located in a regional zone. EOR correlated with survival in both LGG (p = 0.001) and higher-grade glioma (HGG) patients (p = 0.008). The highest EORs were achieved in anterior-zone LGGs (p = 0.024). In terms of developing postoperative neurological deficits, patients with giant tumors were more susceptible (p = 0.038). Postoperative transient neurological deficit was recorded in 12.79%, and permanent deficit in 15.70% of patients. Patients who developed either transient or permanent postsurgical neurological deficits exhibited poorer survival (p < 0.001).

CONCLUSIONS

The transcortical surgical approach can achieve maximal tumor resection in all insular zones. In addition, the incorporation of adjunct technologies such as multimodal brain imaging and mapping of cortical and subcortical eloquent brain regions into the transcortical approach favors postoperative neurological outcomes, and prolongs patient survival.