Search Results

You are looking at 1 - 10 of 33 items for

  • Author or Editor: Munish Gupta x
Clear All Modify Search
Open access

Munish C. Gupta

Vertebral column resection is an excellent tool for the correction of sharp angular deformities. Preoperative planning is crucial, and a 3D model is helpful. The spinal column is stabilized before any resection is performed. The dorsal fusion mass holds the dura and spinal cord suspended with the adhesions while the anterior decompression is being performed. The correction is performed by shortening with compression, rod exchange, in situ bending, cantilever, and compression. The anterior column support is important. Multiple rods prevent early rod failure. The cord is covered with bone graft to prevent mechanical compression from muscle or a hematoma.

The video can be found here: https://youtu.be/FlBE5SFa2Gw.

Restricted access

Owoicho Adogwa, Jacob M. Buchowski, Lawrence G. Lenke, Maksim A. Shlykov, Mostafa El Dafrawy, Thamrong Lertudomphonwanit, Mitchel R. Obey, Jonathan Koscso, Munish C. Gupta and Keith H. Bridwell

OBJECTIVE

Pseudarthrosis is a common complication of long-segment fusions after surgery for correction of adult spinal deformity (ASD). Interbody fusions are frequently used at the caudal levels of long-segment spinal deformity constructs as adjuncts for anterior column support. There is a paucity of literature comparing rod fracture rates (proxy for pseudarthrosis) in patients undergoing transforaminal lumbar interbody fusion (TLIF) versus anterior lumbar interbody fusion (ALIF) at the caudal levels of the long spinal deformity construct. In this study the authors sought to compare rod fracture rates in patients undergoing surgery for correction of ASD with TLIF versus ALIF at the caudal levels of long spinal deformity constructs.

METHODS

We reviewed clinical records of patients who underwent surgery for correction of ASD between 2008 and 2014 at a single institution. Data including demographics, comorbidities, and indications for surgery, as well as postoperative variables, were collected for each patient. All patients had a minimum 2-year follow-up. Patients were dichotomized into two groups for comparison on the basis of undergoing a TLIF versus an ALIF procedure at the caudal levels of long spinal deformity constructs. The primary outcome of interest was the rate of rod fractures.

RESULTS

A total of 198 patients (TLIF 133 patients; ALIF 65 patients) underwent a long-segment fusion to the sacrum with iliac fixation. The mean ± standard deviation follow-up period was 62.23 ± 29.26 months. Baseline demographic variables were similar in both patient groups. There were no significant differences between groups in the severity of the baseline sagittal plane deformity (i.e., baseline lumbar-pelvic parameters) or the final deformity correction achieved. Mean total recombinant human bone morphogenetic protein 2 (rhBMP-2) dose for L1–sacrum fusion was significantly higher in the ALIF (100 mg) than in the TLIF (62 mg) group. The overall rod failure rate (cases with rod fracture/total cases) within this case series was 19.19% (38/198); 10.60% (21/198) were unilateral rod fractures and 8.58% (17/198) were bilateral rod fractures. At last clinical follow-up, there were no statistically significant differences in bilateral rod fracture rates between the group of patients who had a TLIF procedure and the group who had an ALIF procedure at the caudal levels of the long spinal deformity constructs (TLIF 10.52% vs ALIF 4.61%, p = 0.11). However, the incidence rate (cases per patient follow-up years) for bilateral rod fractures was significantly higher in the TLIF than in the ALIF cohort (TLIF 2.20% vs ALIF 0.70%, p < 0.0001). The reoperation rate for rod fractures was similar between the patient groups (p = 0.40).

CONCLUSIONS

Although both ALIF and TLIF procedures at the caudal levels of long spinal deformity constructs achieved similar and satisfactory deformity correction, ALIFs were associated with a lower rod fracture incidence rate. There were no differences between groups in the prevalence of rod fracture or revision surgery, however, and both groups had low bilateral rod fracture prevalence and incidence rates. One technique is not clearly superior to the other.

Restricted access

Virginie Lafage, Neil J. Bharucha, Frank Schwab, Robert A. Hart, Douglas Burton, Oheneba Boachie-Adjei, Justin S. Smith, Richard Hostin, Christopher Shaffrey, Munish Gupta, Behrooz A. Akbarnia and Shay Bess

Object

Sagittal spinopelvic imbalance is a major contributor to pain and disability for patients with adult spinal deformity (ASD). Preoperative planning is essential for pedicle subtraction osteotomy (PSO) candidates; however, current methods are often inaccurate because no formula to date predicts both postoperative sagittal balance and pelvic alignment. The authors of this study aimed to evaluate the accuracy of 2 novel formulas in predicting postoperative spinopelvic alignment after PSO.

Methods

This study is a multicenter retrospective consecutive PSO case series. Adults with spinal deformity (> 21 years old) who were treated with a single-level lumbar PSO for sagittal imbalance were evaluated. All patients underwent preoperative and a minimum of 6-month postoperative radiography. Two novel formulas were used to predict the postoperative spinopelvic alignment. The results predicted by the formulas were then compared with the actual postoperative radiographic values, and the formulas' ability to identify successful (sagittal vertical axis [SVA] ≤ 50 mm and pelvic tilt [PT] ≤ 25°) and unsuccessful (SVA > 50 mm or PT > 25°) outcomes was evaluated.

Results

Ninety-nine patients met inclusion criteria. The median absolute error between the predicted and actual PT was 4.1° (interquartile range 2.0°–6.4°). The median absolute error between the predicted and actual SVA was 27 mm (interquartile range 11–47 mm). Forty-one of 54 patients with a formula that predicted a successful outcome had a successful outcome as shown by radiography (positive predictive value = 0.76). Forty-four of 45 patients with a formula that predicted an unsuccessful outcome had an unsuccessful outcome as shown by radiography (negative predictive value = 0.98).

Conclusions

The spinopelvic alignment formulas were accurate when predicting unsuccessful outcomes but less reliable when predicting successful outcomes. The preoperative surgical plan should be altered if an unsuccessful result is predicted. However, even after obtaining a predicted successful outcome, surgeons should ensure that the predicted values are not too close to unsuccessful values and should identify other variables that may affect alignment. In the near future, it is anticipated that the use of these formulas will lead to better surgical planning and improved outcomes for patients with complex ASD.

Full access

Alex Soroceanu, Douglas C. Burton, Bassel Georges Diebo, Justin S. Smith, Richard Hostin, Christopher I. Shaffrey, Oheneba Boachie-Adjei, Gregory M. Mundis Jr., Christopher Ames, Thomas J. Errico, Shay Bess, Munish C. Gupta, Robert A. Hart, Frank J. Schwab, Virginie Lafage and International Spine Study Group

OBJECT

Adult spinal deformity (ASD) surgery is known for its high complication rate. This study examined the impact of obesity on complication rates, infection, and patient-reported outcomes in patients undergoing surgery for ASD.

METHODS

This study was a retrospective review of a multicenter prospective database of patients with ASD who were treated surgically. Patients with available 2-year follow-up data were included. Obesity was defined as having a body mass index (BMI) ≥ 30 kg/m2. Data collected included complications (total, minor, major, implant-related, radiographic, infection, revision surgery, and neurological injury), estimated blood loss (EBL), operating room (OR) time, length of stay (LOS), and patient-reported questionnaires (Oswestry Disability Index [ODI], Short Form-36 [SF-36], and Scoliosis Research Society [SRS]) at baseline and at 6 weeks, 1 year, and 2 years postoperatively. The impact of obesity was studied using multivariate modeling, accounting for confounders.

RESULTS

Of 241 patients who satisfied inclusion criteria, 175 patients were nonobese and 66 were obese. Regression models showed that obese patients had a higher overall incidence of major complications (IRR 1.54, p = 0.02) and wound infections (odds ratio 4.88, p = 0.02). Obesity did not increase the number of minor complications (p = 0.62), radiographic complications (p = 0.62), neurological complications (p = 0.861), or need for revision surgery (p = 0.846). Obesity was not significantly correlated with OR time (p = 0.23), LOS (p = 0.9), or EBL (p = 0.98). Both groups experienced significant improvement overtime, as measured on the ODI (p = 0.0001), SF-36 (p = 0.0001), and SRS (p = 0.0001) questionnaires. However, the overall magnitude of improvement was less for obese patients (ODI, p = 0.0035; SF-36, p = 0.0012; SRS, p = 0.022). Obese patients also had a lower rate of improvement over time (SRS, p = 0.0085; ODI, p = 0.0001; SF-36, p = 0.0001).

CONCLUSIONS

This study revealed that obese patients have an increased risk of complications following ASD correction. Despite these increased complications, obese patients do benefit from surgical intervention; however, their improvement in health-related quality of life (HRQL) is less than that of nonobese patients.

Restricted access

Virginie Lafage, Frank Schwab, Shaleen Vira, Robert Hart, Douglas Burton, Justin S. Smith, Oheneba Boachie-Adjei, Alexis Shelokov, Richard Hostin, Christopher I. Shaffrey, Munish Gupta, Behrooz A. Akbarnia, Shay Bess and Jean-Pierre Farcy

Object

Pedicle subtraction osteotomy (PSO) is a spinal realignment technique that may be used to correct sagittal spinal imbalance. Theoretically, the level and degree of resection via a PSO should impact the degree of sagittal plane correction in the setting of deformity. However, the quantitative effect of PSO level and focal angular change on postoperative spinopelvic parameters has not been well described. The purpose of this study is to analyze the relationship between the level/degree of PSO and changes in global sagittal balance and spinopelvic parameters.

Methods

In this multicenter retrospective study, 70 patients (54 women and 16 men) underwent lumbar PSO surgery for spinal imbalance. Preoperative and postoperative free-standing sagittal radiographs were obtained and analyzed by regional curves (lumbar, thoracic, and thoracolumbar), pelvic parameters (pelvic incidence and pelvic tilt [PT]) and global balance (sagittal vertical axis [SVA] and T-1 spinopelvic inclination). Correlations between PSO parameters (level and degree of change in angle between the 2 adjacent vertebrae) and spinopelvic measurements were analyzed.

Results

Pedicle subtraction osteotomy distribution by level and degree of correction was as follows: L-1 (6 patients, 24°), L-2 (15 patients, 24°), L-3 (29 patients, 25°), and L-4 (20 patients, 22°). There was no significant difference in the focal correction achieved by PSO by level. All patients demonstrated changes in preoperative to postoperative parameters including increased lumbar lordosis (from 20° to 49°, p < 0.001), increased thoracic kyphosis (from 30° to 38°, p < 0.001), decreased SVA and T-1 spinopelvic inclination (from 122 to 34 mm, p < 0.001 and from +3° to −4°, p < 0.001, respectively), and decreased PT (from 31° to 23°, p < 0.001). More caudal PSO was correlated with greater PT reduction (r = −0.410, p < 0.05). No correlation was found between SVA correction and PSO location. The PSO degree was correlated with change in thoracic kyphosis (r = −0.474, p < 0.001), lumbar lordosis (r = 0.667, p < 0.001), sacral slope (r = 0.426, p < 0.001), and PT (r = −0.358, p < 0.005).

Conclusions

The degree of PSO resection correlates more with spinopelvic parameters (lumbar lordosis, thoracic kyphosis, PT, and sacral slope) than PSO level. More importantly, PSO level impacts postoperative PT correction but not SVA.

Full access

Blake N. Staub, Renaud Lafage, Han Jo Kim, Christopher I. Shaffrey, Gregory M. Mundis Jr., Richard Hostin, Douglas Burton, Lawrence Lenke, Munish C. Gupta, Christopher Ames, Eric Klineberg, Shay Bess, Frank Schwab, Virginie Lafage and the International Spine Study Group

OBJECTIVE

Numerous studies have attempted to delineate the normative value for T1S−CL (T1 slope minus cervical lordosis) as a marker for both cervical deformity and a goal for correction similar to how PI-LL (pelvic incidence–lumbar lordosis) mismatch informs decision making in thoracolumbar adult spinal deformity (ASD). The goal of this study was to define the relationship between T1 slope (T1S) and cervical lordosis (CL).

METHODS

This is a retrospective review of a prospective database. Surgical ASD cases were initially analyzed. Analysis across the sagittal parameters was performed. Linear regression analysis based on T1S was used to provide a clinically applicable equation to predict CL. Findings were validated using the postoperative alignment of the ASD patients. Further validation was then performed using a second, normative database. The range of normal alignment associated with horizontal gaze was derived from a multilinear regression on data from asymptomatic patients.

RESULTS

A total of 103 patients (mean age 54.7 years) were included. Analysis revealed a strong correlation between T1S and C0–7 lordosis (r = 0.886), C2–7 lordosis (r = 0.815), and C0–2 lordosis (r = 0.732). There was no significant correlation between T1S and T1S−CL. Linear regression analysis revealed that T1S−CL assumed a constant value of 16.5° (R2 = 0.664, standard error 2°). These findings were validated on the postoperative imaging (mean absolute error [MAE] 5.9°). The equation was then applied to the normative database (MAE 6.7° controlling for McGregor slope [MGS] between −5° and 15°). A multilinear regression between C2–7, T1S, and MGS demonstrated a range of T1S−CL between 14.5° and 26.5° was necessary to maintain horizontal gaze.

CONCLUSIONS

Normative CL can be predicted via the formula CL = T1S − 16.5° ± 2°. This implies a threshold of deformity and aids in providing a goal for surgical correction. Just as pelvic incidence (PI) can be used to determine the ideal LL, T1S can be used to predict ideal CL. This formula also implies that a kyphotic cervical alignment is to be expected for individuals with a T1S < 16.5°.

Restricted access

Han Jo Kim, Sohrab Virk, Jonathan Elysee, Peter Passias, Christopher Ames, Christopher I. Shaffrey, Gregory Mundis Jr., Themistocles Protopsaltis, Munish Gupta, Eric Klineberg, Justin S. Smith, Douglas Burton, Frank Schwab, Virginie Lafage, Renaud Lafage and the International Spine Study Group

OBJECTIVE

Cervical deformity (CD) is difficult to define due to the high variability in normal cervical alignment based on postural- and thoracolumbar-driven changes to cervical alignment. The purpose of this study was to identify whether patterns of sagittal deformity could be established based on neutral and dynamic alignment, as shown on radiographs.

METHODS

This study is a retrospective review of a prospective, multicenter database of CD patients who underwent surgery from 2013 to 2015. Their radiographs were reviewed by 12 individuals using a consensus-based method to identify severe sagittal CD. Radiographic parameters correlating with health-related quality of life were introduced in a two-step cluster analysis (a combination of hierarchical cluster and k-means cluster) to identify patterns of sagittal deformity. A comparison of lateral and lateral extension radiographs between clusters was performed using an ANOVA in a post hoc analysis.

RESULTS

Overall, 75 patients were identified as having severe CD due to sagittal malalignment, and they formed the basis of this study. Their mean age was 64 years, their body mass index was 29 kg/m2, and 66% were female. There were significant correlations between focal alignment/flexibility of maximum kyphosis, cervical lordosis, and thoracic slope minus cervical lordosis (TS-CL) flexibility (r = 0.27, 0.31, and −0.36, respectively). Cluster analysis revealed 3 distinct groups based on alignment and flexibility. Group 1 (a pattern involving a flat neck with lack of compensation) had a large TS-CL mismatch despite flexibility in cervical lordosis; group 2 (a pattern involving focal deformity) had focal kyphosis between 2 adjacent levels but no large regional cervical kyphosis under the setting of a low T1 slope (T1S); and group 3 (a pattern involving a cervicothoracic deformity) had a very large T1S with a compensatory hyperlordosis of the cervical spine.

CONCLUSIONS

Three distinct patterns of CD were identified in this cohort: flat neck, focal deformity, and cervicothoracic deformity. One key element to understanding the difference between these groups was the alignment seen on extension radiographs. This information is a first step in developing a classification system that can guide the surgical treatment for CD and the choice of fusion level.

Full access

Alexander A. Theologis, Tamir Ailon, Justin K. Scheer, Justin S. Smith, Christopher I. Shaffrey, Shay Bess, Munish Gupta, Eric O. Klineberg, Khaled Kebaish, Frank Schwab, Virginie Lafage, Douglas Burton, Robert Hart, Christopher P. Ames and The International Spine Study Group

OBJECTIVE

The objective of this study was to isolate whether the effect of a baseline clinical history of depression on outcome is independent of associated physical disability and to evaluate which mental health screening tool has the most utility in determining 2-year clinical outcomes after adult spinal deformity (ASD) surgery.

METHODS

Consecutively enrolled patients with ASD in a prospective, multicenter ASD database who underwent surgical intervention with a minimum 2-year follow-up were retrospectively reviewed. A subset of patients who completed the Distress and Risk Assessment Method (DRAM) was also analyzed. The effects of categorical baseline depression and DRAM classification on the Oswestry Disability Index (ODI), SF-36, and Scoliosis Research Society questionnaire (SRS-22r) were assessed using univariate and multivariate linear regression analyses. The probability of achieving ≥ 1 minimal clinically important difference (MCID) on the ODI based on the DRAM’s Modified Somatic Perceptions Questionnaire (MSPQ) score was estimated.

RESULTS

Of 267 patients, 66 (24.7%) had self-reported preoperative depression. Patients with baseline depression had significantly more preoperative back pain, greater BMI and Charlson Comorbidity Indices, higher ODIs, and lower SRS-22r and SF-36 Physical/Mental Component Summary (PCS/MCS) scores compared with those without self-reported baseline depression. They also had more severe regional and global sagittal malalignment. After adjusting for these differences, preoperative depression did not impact 2-year ODI, PCS/MCS, or SRS-22r totals (p > 0.05). Compared with those in the “normal” DRAM category, “distressed somatics” (n = 11) had higher ODI (+23.5 points), lower PCS (−10.9), SRS-22r activity (−0.9), and SRS-22r total (−0.8) scores (p ≤ 0.01), while “distressed depressives” (n = 25) had lower PCS (−8.4) and SRS-22r total (−0.5) scores (p < 0.05). After adjusting for important covariates, each additional point on the baseline MSPQ was associated with a 0.8-point increase in 2-year ODI (p = 0.03). The probability of improving by at least 1 MCID in 2-year ODI ranged from 77% to 21% for MSPQ scores 0–20, respectively.

CONCLUSIONS

A baseline clinical history of depression does not correlate with worse 2-year outcomes after ASD surgery after adjusting for baseline differences in comorbidities, health-related quality of life, and spinal deformity severity. Conversely, DRAM improved risk stratification of patient subgroups predisposed to achieving suboptimal surgical outcomes. The DRAM’s MSPQ was more predictive than MCS and SRS mental domain for 2-year outcomes and may be a valuable tool for surgical screening.

Full access

Justin K. Scheer, Peter G. Passias, Alexandra M. Sorocean, Anthony J. Boniello, Gregory M. Mundis Jr., Eric Klineberg, Han Jo Kim, Themistocles S. Protopsaltis, Munish Gupta, Shay Bess, Christopher I. Shaffrey, Frank Schwab, Virginie Lafage, Justin S. Smith, Christopher P. Ames and The International Spine Study Group

OBJECT

A high prevalence of cervical deformity (CD) has been identified among adult patients with thoracolumbar spinal deformity undergoing surgical treatment. The clinical impact of this is uncertain. This study aimed to quantify the differences in patient-reported outcomes among patients with adult spinal deformity (ASD) based on presence of CD prior to treatment.

METHODS

A retrospective review was conducted of a multicenter prospective database of patients with ASD who underwent surgical treatment with 2-year follow-up. Patients were grouped by the presence of preoperative CD: 1) cervical positive sagittal malalignment (CPSM) C2–7 sagittal vertical axis ≥ 4 cm; 2) cervical kyphosis (CK) C2–7 angle > 0; 3) CPSM and CK (BOTH); and 4) no baseline CD (NONE). Health-related quality of life (HRQOL) scores included the Physical Component Summary and Mental Component Summary (PCS and MCS) scores of the 36-Item Short Form Health Survey (SF-36), Oswestry Disability Index (ODI), Scoliosis Research Society-22 questionnaire (SRS-22), and minimum clinically important difference (MCID) of these scores at 2 years. Standard radiographic measurements were conducted for cervical, thoracic, and thoracolumbar parameters.

RESULTS

One hundred eighty-two patients were included in this study: CPSM, 45; CK, 37; BOTH, 16; and NONE, 84. Patients with preoperative CD and those without had similar baseline thoracolumbar radiographic measurements and similar correction rates at 2 years. Patients with and without preoperative CD had similar baseline HRQOL and on average both groups experienced some HRQOL improvement. However, those with preoperative CPSM had significantly worse postoperative ODI, PCS, SRS-22 Activity, SRS-22 Appearance, SRS-22 Pain, SRS-22 Satisfaction, and SRS-22 Total score, and were less likely to meet MCID for ODI, PCS, SRS-22 Activity, and SRS-22 Pain scores with the following ORs and 95% CIs: ODI 0.19 (0.07–0.58), PCS 0.17 (0.06–0.47), SRS-22 Activity 0.23 (0.09–0.62), SRS-22 Pain 0.20 (0.08–0.53), and SRS-22 Appearance 0.34 (0.12–0.94). Preoperative CK did not have an effect on outcomes. Interestingly, despite correction of the thoracolumbar deformity, 53.3% and 51.4% of patients had persistent CPSM and persistent CK, respectively.

CONCLUSIONS

Patients with thoracolumbar deformity without preoperative CD are likely to have greater improvements in HRQOL after surgery than patients with concomitant preoperative CD. Cervical positive sagittal alignment in adult patients with thoracolumbar deformity is strongly associated with inferior outcomes and failure to reach MCID at 2-year follow-up despite having similar baseline HRQOL to patients without CD. This was the first study to assess the impact of concomitant preoperative cervical malalignment in adult patients with thoracolumbar deformity. These results can help surgeons educate patients at risk for inferior outcomes and direct future research to identify an etiology and improve patient outcomes. Investigation into the etiology of the baseline cervical malalignment may be warranted in patients who present with thoracolumbar deformity.

Full access

Emmanuelle Ferrero, Barthelemy Liabaud, Jensen K. Henry, Christopher P. Ames, Khaled Kebaish, Gregory M. Mundis, Richard Hostin, Munish C. Gupta, Oheneba Boachie-Adjei, Justin S. Smith, Robert A. Hart, Ibrahim Obeid, Bassel G. Diebo, Frank J. Schwab and Virginie Lafage

OBJECTIVE

Three-column osteotomy (3CO) is a demanding technique that is performed to correct sagittal spinal malalignment. However, the impact of the 3CO level on pelvic or truncal sagittal correction remains unclear. In this study, the authors assessed the impact of 3CO level and postoperative apex of lumbar lordosis on sagittal alignment correction, complications, and revisions.

METHODS

In this retrospective study of a multicenter spinal deformity database, radiographic data were analyzed at baseline and at 1- and 2-year follow-up to quantify spinopelvic alignment, apex of lordosis, and resection angle. The impact of 3CO level and apex level of lumbar lordosis on the sagittal correction was assessed. Logistic regression analyses were performed, controlling for cofounders, to investigate the effects of 3CO level and apex level on intraoperative and postoperative complications as well as on the need for subsequent revision surgery.

RESULTS

A total of 468 patients were included (mean age 60.8 years, mean body mass index 28.1 kg/m2); 70% of patients were female. The average 3CO resection angle was 25.1° and did not significantly differ with regard to 3CO level. There were no significant correlations between the 3CO level and amount of sagittal vertical axis or pelvic tilt correction. The postoperative apex level significantly correlated with greater correction of pelvic tilt (2° per more caudal level, R = −0.2, p = 0.006). Lower-level 3CO significantly correlated with revisions for pseudarthrosis (OR = 3.88, p = 0.001) and postoperative motor deficits (OR = 2.02, p = 0.026).

CONCLUSIONS

In this study, a more caudal lumbar 3CO level did not lead to greater sagittal vertical axis correction. The postoperative apex of lumbar lordosis significantly impacted pelvic tilt. 3CO levels that were more caudal were associated with more postoperative motor deficits and revisions.