Search Results

You are looking at 1 - 10 of 43 items for

  • Author or Editor: Munish Gupta x
  • Refine by Access: all x
Clear All Modify Search
Open access

Munish C. Gupta

Vertebral column resection is an excellent tool for the correction of sharp angular deformities. Preoperative planning is crucial, and a 3D model is helpful. The spinal column is stabilized before any resection is performed. The dorsal fusion mass holds the dura and spinal cord suspended with the adhesions while the anterior decompression is being performed. The correction is performed by shortening with compression, rod exchange, in situ bending, cantilever, and compression. The anterior column support is important. Multiple rods prevent early rod failure. The cord is covered with bone graft to prevent mechanical compression from muscle or a hematoma.

The video can be found here: https://youtu.be/FlBE5SFa2Gw.

Restricted access

Owoicho Adogwa, Jacob M. Buchowski, Lawrence G. Lenke, Maksim A. Shlykov, Mostafa El Dafrawy, Thamrong Lertudomphonwanit, Mitchel R. Obey, Jonathan Koscso, Munish C. Gupta, and Keith H. Bridwell

OBJECTIVE

Pseudarthrosis is a common complication of long-segment fusions after surgery for correction of adult spinal deformity (ASD). Interbody fusions are frequently used at the caudal levels of long-segment spinal deformity constructs as adjuncts for anterior column support. There is a paucity of literature comparing rod fracture rates (proxy for pseudarthrosis) in patients undergoing transforaminal lumbar interbody fusion (TLIF) versus anterior lumbar interbody fusion (ALIF) at the caudal levels of the long spinal deformity construct. In this study the authors sought to compare rod fracture rates in patients undergoing surgery for correction of ASD with TLIF versus ALIF at the caudal levels of long spinal deformity constructs.

METHODS

We reviewed clinical records of patients who underwent surgery for correction of ASD between 2008 and 2014 at a single institution. Data including demographics, comorbidities, and indications for surgery, as well as postoperative variables, were collected for each patient. All patients had a minimum 2-year follow-up. Patients were dichotomized into two groups for comparison on the basis of undergoing a TLIF versus an ALIF procedure at the caudal levels of long spinal deformity constructs. The primary outcome of interest was the rate of rod fractures.

RESULTS

A total of 198 patients (TLIF 133 patients; ALIF 65 patients) underwent a long-segment fusion to the sacrum with iliac fixation. The mean ± standard deviation follow-up period was 62.23 ± 29.26 months. Baseline demographic variables were similar in both patient groups. There were no significant differences between groups in the severity of the baseline sagittal plane deformity (i.e., baseline lumbar-pelvic parameters) or the final deformity correction achieved. Mean total recombinant human bone morphogenetic protein 2 (rhBMP-2) dose for L1–sacrum fusion was significantly higher in the ALIF (100 mg) than in the TLIF (62 mg) group. The overall rod failure rate (cases with rod fracture/total cases) within this case series was 19.19% (38/198); 10.60% (21/198) were unilateral rod fractures and 8.58% (17/198) were bilateral rod fractures. At last clinical follow-up, there were no statistically significant differences in bilateral rod fracture rates between the group of patients who had a TLIF procedure and the group who had an ALIF procedure at the caudal levels of the long spinal deformity constructs (TLIF 10.52% vs ALIF 4.61%, p = 0.11). However, the incidence rate (cases per patient follow-up years) for bilateral rod fractures was significantly higher in the TLIF than in the ALIF cohort (TLIF 2.20% vs ALIF 0.70%, p < 0.0001). The reoperation rate for rod fractures was similar between the patient groups (p = 0.40).

CONCLUSIONS

Although both ALIF and TLIF procedures at the caudal levels of long spinal deformity constructs achieved similar and satisfactory deformity correction, ALIFs were associated with a lower rod fracture incidence rate. There were no differences between groups in the prevalence of rod fracture or revision surgery, however, and both groups had low bilateral rod fracture prevalence and incidence rates. One technique is not clearly superior to the other.

Free access

Mostafa H. El Dafrawy, Owoicho Adogwa, Adam M. Wegner, Nicholas A. Pallotta, Michael P. Kelly, Khaled M. Kebaish, Keith H. Bridwell, and Munish C. Gupta

OBJECTIVE

In this study, the authors’ goal was to determine the intra- and interobserver reliability of a new classification system that allows the description of all possible constructs used across three-column osteotomies (3COs) in terms of rod configuration and density.

METHODS

Thirty-five patients with multirod constructs (MRCs) across a 3CO were classified by two spinal surgery fellows according to the new system, and then were reclassified 2 weeks later. Constructs were classified as follows: the number of rods across the osteotomy site followed by a letter corresponding to the type of rod configuration: “M” is for a main rod configuration, defined as a single rod spanning the osteotomy. “L” is for linked rod configurations, defined as 2 rods directly connected to each other at the osteotomy site. “S” is for satellite rod configurations, which were defined as a short rod independent of the main rod with anchors above and below the 3CO. “A” is for accessory rods, defined as an additional rod across the 3CO attached to main rods but not attached to any anchors across the osteotomy site. “I” is for intercalary rod configurations, defined as a rod connecting 2 separate constructs across the 3CO, without the intercalary rod itself attached to any anchors across the osteotomy site. The intra- and interobserver reliability of this classification system was determined.

RESULTS

A sample estimation for validation assuming two readers and 35 subjects results in a two-sided 95% confidence interval with a width of 0.19 and a kappa value of 0.8 (SD 0.3). The Fleiss kappa coefficient (κ) was used to calculate the degree of agreement between interrater and intraobserver reliability. The interrater kappa coefficient was 0.3, and the intrarater kappa coefficient was 0.63 (good reliability). This scenario represents a high degree of agreement despite a low kappa coefficient. Correct observations by both observers were 34 of 35 and 33 of 35 at both time points. Misclassification was related to difficulty in determining connectors versus anchors.

CONCLUSIONS

MRCs across 3COs have variable rod configurations. Currently, no classification system or agreement on nomenclature exists to define the configuration of rods across 3COs. The authors present a new, comprehensive MRC classification system with good inter- and intraobserver reliability and a high degree of agreement that allows for a standardized description of MRCs across 3COs.

Restricted access

Virginie Lafage, Neil J. Bharucha, Frank Schwab, Robert A. Hart, Douglas Burton, Oheneba Boachie-Adjei, Justin S. Smith, Richard Hostin, Christopher Shaffrey, Munish Gupta, Behrooz A. Akbarnia, and Shay Bess

Object

Sagittal spinopelvic imbalance is a major contributor to pain and disability for patients with adult spinal deformity (ASD). Preoperative planning is essential for pedicle subtraction osteotomy (PSO) candidates; however, current methods are often inaccurate because no formula to date predicts both postoperative sagittal balance and pelvic alignment. The authors of this study aimed to evaluate the accuracy of 2 novel formulas in predicting postoperative spinopelvic alignment after PSO.

Methods

This study is a multicenter retrospective consecutive PSO case series. Adults with spinal deformity (> 21 years old) who were treated with a single-level lumbar PSO for sagittal imbalance were evaluated. All patients underwent preoperative and a minimum of 6-month postoperative radiography. Two novel formulas were used to predict the postoperative spinopelvic alignment. The results predicted by the formulas were then compared with the actual postoperative radiographic values, and the formulas' ability to identify successful (sagittal vertical axis [SVA] ≤ 50 mm and pelvic tilt [PT] ≤ 25°) and unsuccessful (SVA > 50 mm or PT > 25°) outcomes was evaluated.

Results

Ninety-nine patients met inclusion criteria. The median absolute error between the predicted and actual PT was 4.1° (interquartile range 2.0°–6.4°). The median absolute error between the predicted and actual SVA was 27 mm (interquartile range 11–47 mm). Forty-one of 54 patients with a formula that predicted a successful outcome had a successful outcome as shown by radiography (positive predictive value = 0.76). Forty-four of 45 patients with a formula that predicted an unsuccessful outcome had an unsuccessful outcome as shown by radiography (negative predictive value = 0.98).

Conclusions

The spinopelvic alignment formulas were accurate when predicting unsuccessful outcomes but less reliable when predicting successful outcomes. The preoperative surgical plan should be altered if an unsuccessful result is predicted. However, even after obtaining a predicted successful outcome, surgeons should ensure that the predicted values are not too close to unsuccessful values and should identify other variables that may affect alignment. In the near future, it is anticipated that the use of these formulas will lead to better surgical planning and improved outcomes for patients with complex ASD.

Full access

Justin K. Scheer, Peter G. Passias, Alexandra M. Sorocean, Anthony J. Boniello, Gregory M. Mundis Jr., Eric Klineberg, Han Jo Kim, Themistocles S. Protopsaltis, Munish Gupta, Shay Bess, Christopher I. Shaffrey, Frank Schwab, Virginie Lafage, Justin S. Smith, Christopher P. Ames, and The International Spine Study Group

OBJECT

A high prevalence of cervical deformity (CD) has been identified among adult patients with thoracolumbar spinal deformity undergoing surgical treatment. The clinical impact of this is uncertain. This study aimed to quantify the differences in patient-reported outcomes among patients with adult spinal deformity (ASD) based on presence of CD prior to treatment.

METHODS

A retrospective review was conducted of a multicenter prospective database of patients with ASD who underwent surgical treatment with 2-year follow-up. Patients were grouped by the presence of preoperative CD: 1) cervical positive sagittal malalignment (CPSM) C2–7 sagittal vertical axis ≥ 4 cm; 2) cervical kyphosis (CK) C2–7 angle > 0; 3) CPSM and CK (BOTH); and 4) no baseline CD (NONE). Health-related quality of life (HRQOL) scores included the Physical Component Summary and Mental Component Summary (PCS and MCS) scores of the 36-Item Short Form Health Survey (SF-36), Oswestry Disability Index (ODI), Scoliosis Research Society-22 questionnaire (SRS-22), and minimum clinically important difference (MCID) of these scores at 2 years. Standard radiographic measurements were conducted for cervical, thoracic, and thoracolumbar parameters.

RESULTS

One hundred eighty-two patients were included in this study: CPSM, 45; CK, 37; BOTH, 16; and NONE, 84. Patients with preoperative CD and those without had similar baseline thoracolumbar radiographic measurements and similar correction rates at 2 years. Patients with and without preoperative CD had similar baseline HRQOL and on average both groups experienced some HRQOL improvement. However, those with preoperative CPSM had significantly worse postoperative ODI, PCS, SRS-22 Activity, SRS-22 Appearance, SRS-22 Pain, SRS-22 Satisfaction, and SRS-22 Total score, and were less likely to meet MCID for ODI, PCS, SRS-22 Activity, and SRS-22 Pain scores with the following ORs and 95% CIs: ODI 0.19 (0.07–0.58), PCS 0.17 (0.06–0.47), SRS-22 Activity 0.23 (0.09–0.62), SRS-22 Pain 0.20 (0.08–0.53), and SRS-22 Appearance 0.34 (0.12–0.94). Preoperative CK did not have an effect on outcomes. Interestingly, despite correction of the thoracolumbar deformity, 53.3% and 51.4% of patients had persistent CPSM and persistent CK, respectively.

CONCLUSIONS

Patients with thoracolumbar deformity without preoperative CD are likely to have greater improvements in HRQOL after surgery than patients with concomitant preoperative CD. Cervical positive sagittal alignment in adult patients with thoracolumbar deformity is strongly associated with inferior outcomes and failure to reach MCID at 2-year follow-up despite having similar baseline HRQOL to patients without CD. This was the first study to assess the impact of concomitant preoperative cervical malalignment in adult patients with thoracolumbar deformity. These results can help surgeons educate patients at risk for inferior outcomes and direct future research to identify an etiology and improve patient outcomes. Investigation into the etiology of the baseline cervical malalignment may be warranted in patients who present with thoracolumbar deformity.

Restricted access

Han Jo Kim, Sohrab Virk, Jonathan Elysee, Peter Passias, Christopher Ames, Christopher I. Shaffrey, Gregory Mundis Jr., Themistocles Protopsaltis, Munish Gupta, Eric Klineberg, Justin S. Smith, Douglas Burton, Frank Schwab, Virginie Lafage, Renaud Lafage, and the International Spine Study Group

OBJECTIVE

Cervical deformity (CD) is difficult to define due to the high variability in normal cervical alignment based on postural- and thoracolumbar-driven changes to cervical alignment. The purpose of this study was to identify whether patterns of sagittal deformity could be established based on neutral and dynamic alignment, as shown on radiographs.

METHODS

This study is a retrospective review of a prospective, multicenter database of CD patients who underwent surgery from 2013 to 2015. Their radiographs were reviewed by 12 individuals using a consensus-based method to identify severe sagittal CD. Radiographic parameters correlating with health-related quality of life were introduced in a two-step cluster analysis (a combination of hierarchical cluster and k-means cluster) to identify patterns of sagittal deformity. A comparison of lateral and lateral extension radiographs between clusters was performed using an ANOVA in a post hoc analysis.

RESULTS

Overall, 75 patients were identified as having severe CD due to sagittal malalignment, and they formed the basis of this study. Their mean age was 64 years, their body mass index was 29 kg/m2, and 66% were female. There were significant correlations between focal alignment/flexibility of maximum kyphosis, cervical lordosis, and thoracic slope minus cervical lordosis (TS-CL) flexibility (r = 0.27, 0.31, and −0.36, respectively). Cluster analysis revealed 3 distinct groups based on alignment and flexibility. Group 1 (a pattern involving a flat neck with lack of compensation) had a large TS-CL mismatch despite flexibility in cervical lordosis; group 2 (a pattern involving focal deformity) had focal kyphosis between 2 adjacent levels but no large regional cervical kyphosis under the setting of a low T1 slope (T1S); and group 3 (a pattern involving a cervicothoracic deformity) had a very large T1S with a compensatory hyperlordosis of the cervical spine.

CONCLUSIONS

Three distinct patterns of CD were identified in this cohort: flat neck, focal deformity, and cervicothoracic deformity. One key element to understanding the difference between these groups was the alignment seen on extension radiographs. This information is a first step in developing a classification system that can guide the surgical treatment for CD and the choice of fusion level.

Full access

Blake N. Staub, Renaud Lafage, Han Jo Kim, Christopher I. Shaffrey, Gregory M. Mundis Jr., Richard Hostin, Douglas Burton, Lawrence Lenke, Munish C. Gupta, Christopher Ames, Eric Klineberg, Shay Bess, Frank Schwab, Virginie Lafage, and the International Spine Study Group

OBJECTIVE

Numerous studies have attempted to delineate the normative value for T1S−CL (T1 slope minus cervical lordosis) as a marker for both cervical deformity and a goal for correction similar to how PI-LL (pelvic incidence–lumbar lordosis) mismatch informs decision making in thoracolumbar adult spinal deformity (ASD). The goal of this study was to define the relationship between T1 slope (T1S) and cervical lordosis (CL).

METHODS

This is a retrospective review of a prospective database. Surgical ASD cases were initially analyzed. Analysis across the sagittal parameters was performed. Linear regression analysis based on T1S was used to provide a clinically applicable equation to predict CL. Findings were validated using the postoperative alignment of the ASD patients. Further validation was then performed using a second, normative database. The range of normal alignment associated with horizontal gaze was derived from a multilinear regression on data from asymptomatic patients.

RESULTS

A total of 103 patients (mean age 54.7 years) were included. Analysis revealed a strong correlation between T1S and C0–7 lordosis (r = 0.886), C2–7 lordosis (r = 0.815), and C0–2 lordosis (r = 0.732). There was no significant correlation between T1S and T1S−CL. Linear regression analysis revealed that T1S−CL assumed a constant value of 16.5° (R2 = 0.664, standard error 2°). These findings were validated on the postoperative imaging (mean absolute error [MAE] 5.9°). The equation was then applied to the normative database (MAE 6.7° controlling for McGregor slope [MGS] between −5° and 15°). A multilinear regression between C2–7, T1S, and MGS demonstrated a range of T1S−CL between 14.5° and 26.5° was necessary to maintain horizontal gaze.

CONCLUSIONS

Normative CL can be predicted via the formula CL = T1S − 16.5° ± 2°. This implies a threshold of deformity and aids in providing a goal for surgical correction. Just as pelvic incidence (PI) can be used to determine the ideal LL, T1S can be used to predict ideal CL. This formula also implies that a kyphotic cervical alignment is to be expected for individuals with a T1S < 16.5°.

Free access

Mathieu Bannwarth, Justin S. Smith, Shay Bess, Eric O. Klineberg, Christopher P. Ames, Gregory M. Mundis Jr., Han Jo Kim, Renaud Lafage, Munish C. Gupta, Douglas C. Burton, Christopher I. Shaffrey, Frank J. Schwab, Virginie Lafage, and and the International Spine Study Group (ISSG)

OBJECTIVE

Recombinant human bone morphogenetic protein–2 (rhBMP-2) has been shown to increase fusion rates; however, cost, limited FDA approval, and possible complications impact its use. Decisions regarding rhBMP-2 use and changes over time have not been well defined. In this study, the authors aimed to assess changes in rhBMP-2 use for adult spinal deformity (ASD) surgery over the past decade.

METHODS

A retrospective review of the International Spine Study Group prospective multicenter database was performed to identify ASD patients treated surgically from 2008 to 2018. For assessment of rhBMP-2 use over time, 3 periods were created: 2008–2011, 2012–2015, and 2016–2018.

RESULTS

Of the patients identified, 1180 met inclusion criteria, with a mean age 60 years and 30% of patients requiring revision surgery; rhBMP-2 was used in 73.9% of patients overall. The mean rhBMP-2 dose per patient was 23.6 mg. Patients receiving rhBMP-2 were older (61 vs 58 years, p < 0.001) and had more comorbidities (Charlson Comorbidity Index 1.9 vs 1.4, p < 0.001), a higher rate of the Scoliosis Research Society–Schwab pelvic tilt modifier (> 0; 68% vs 62%, p = 0.026), a greater deformity correction (change in pelvic incidence minus lumbar lordosis 15° vs 12°, p = 0.01), and more levels fused (8.9 vs 7.9, p = 0.003). Over the 3 time periods, the overall rate of rhBMP-2 use increased and then stabilized (62.5% vs 79% vs 77%). Stratified analysis showed that after an overall increase in rhBMP-2 use, only patients who were younger than 50 years, those who were smokers, those who received a three-column osteotomy (3CO), and patients who underwent revision sustained an increased rate of rhBMP-2 use between the later two periods. No similar increases were noted for older patients, nonsmokers, primary surgery patients, and patients without a 3CO. The total rhBMP-2 dose decreased over time (26.6 mg vs 24.8 mg vs 20.7 mg, p < 0.001). After matching patients by preoperative alignment, 215 patients were included, and a significantly lower rate of complications leading to revision surgery was observed within the 2012–2015 period compared with the 2008–2011 (21.4% vs 13.0%, p = 0.029) period, while rhBMP-2 was increasingly used (80.5% vs 66.0%, p = 0.001). There was a trend toward a lower rate of pseudarthrosis for patients in the 2012–2015 period, but this difference did not reach statistical significance (7% vs 4.2%, p = 0.283).

CONCLUSIONS

The authors found that rhBMP-2 was used in the majority of ASD patients and was more commonly used in those with greater deformity correction. Additionally, over the last 10 years, rhBMP-2 was increasingly used for ASD patients, but the dose has decreased.

Restricted access

Hai V. Le, Joseph B. Wick, Renaud Lafage, Gregory M. Mundis Jr., Robert K. Eastlack, Shay Bess, Douglas C. Burton, Christopher P. Ames, Justin S. Smith, Peter G. Passias, Munish C. Gupta, Virginie Lafage, Eric O. Klineberg, and the International Spine Study Group

OBJECTIVE

The authors’ objective was to determine whether preoperative lateral extension cervical spine radiography can be used to predict osteotomy type and postoperative alignment parameters after cervical spine deformity surgery.

METHODS

A total of 106 patients with cervical spine deformity were reviewed. Radiographic parameters on preoperative cervical neutral and extension lateral radiography were compared with 3-month postoperative radiographic alignment parameters. The parameters included T1 slope, C2 slope, C2–7 cervical lordosis, cervical sagittal vertical axis, and T1 slope minus cervical lordosis. Associations of radiographic parameters with osteotomy type and surgical approach were also assessed.

RESULTS

On extension lateral radiography, patients who underwent lower grade osteotomy had significantly lower T1 slope, T1 slope minus cervical lordosis, cervical sagittal vertical axis, and C2 slope. Patients who achieved more normal parameters on extension lateral radiography were more likely to undergo surgery via an anterior approach. Although baseline parameters were significantly different between neutral lateral and extension lateral radiographs, 3-month postoperative lateral and preoperative extension lateral radiographs were statistically similar for T1 slope minus cervical lordosis and C2 slope.

CONCLUSIONS

Radiographic parameters on preoperative extension lateral radiography were significantly associated with surgical approach and osteotomy grade and were similar to those on 3-month postoperative lateral radiography. These results demonstrated that extension lateral radiography is useful for preoperative planning and predicting postoperative alignment.

Full access

Alex Soroceanu, Douglas C. Burton, Bassel Georges Diebo, Justin S. Smith, Richard Hostin, Christopher I. Shaffrey, Oheneba Boachie-Adjei, Gregory M. Mundis Jr., Christopher Ames, Thomas J. Errico, Shay Bess, Munish C. Gupta, Robert A. Hart, Frank J. Schwab, Virginie Lafage, and International Spine Study Group

OBJECT

Adult spinal deformity (ASD) surgery is known for its high complication rate. This study examined the impact of obesity on complication rates, infection, and patient-reported outcomes in patients undergoing surgery for ASD.

METHODS

This study was a retrospective review of a multicenter prospective database of patients with ASD who were treated surgically. Patients with available 2-year follow-up data were included. Obesity was defined as having a body mass index (BMI) ≥ 30 kg/m2. Data collected included complications (total, minor, major, implant-related, radiographic, infection, revision surgery, and neurological injury), estimated blood loss (EBL), operating room (OR) time, length of stay (LOS), and patient-reported questionnaires (Oswestry Disability Index [ODI], Short Form-36 [SF-36], and Scoliosis Research Society [SRS]) at baseline and at 6 weeks, 1 year, and 2 years postoperatively. The impact of obesity was studied using multivariate modeling, accounting for confounders.

RESULTS

Of 241 patients who satisfied inclusion criteria, 175 patients were nonobese and 66 were obese. Regression models showed that obese patients had a higher overall incidence of major complications (IRR 1.54, p = 0.02) and wound infections (odds ratio 4.88, p = 0.02). Obesity did not increase the number of minor complications (p = 0.62), radiographic complications (p = 0.62), neurological complications (p = 0.861), or need for revision surgery (p = 0.846). Obesity was not significantly correlated with OR time (p = 0.23), LOS (p = 0.9), or EBL (p = 0.98). Both groups experienced significant improvement overtime, as measured on the ODI (p = 0.0001), SF-36 (p = 0.0001), and SRS (p = 0.0001) questionnaires. However, the overall magnitude of improvement was less for obese patients (ODI, p = 0.0035; SF-36, p = 0.0012; SRS, p = 0.022). Obese patients also had a lower rate of improvement over time (SRS, p = 0.0085; ODI, p = 0.0001; SF-36, p = 0.0001).

CONCLUSIONS

This study revealed that obese patients have an increased risk of complications following ASD correction. Despite these increased complications, obese patients do benefit from surgical intervention; however, their improvement in health-related quality of life (HRQL) is less than that of nonobese patients.