Search Results

You are looking at 1 - 10 of 23 items for

  • Author or Editor: Munish C. Gupta x
Clear All Modify Search
Open access

Munish C. Gupta

Vertebral column resection is an excellent tool for the correction of sharp angular deformities. Preoperative planning is crucial, and a 3D model is helpful. The spinal column is stabilized before any resection is performed. The dorsal fusion mass holds the dura and spinal cord suspended with the adhesions while the anterior decompression is being performed. The correction is performed by shortening with compression, rod exchange, in situ bending, cantilever, and compression. The anterior column support is important. Multiple rods prevent early rod failure. The cord is covered with bone graft to prevent mechanical compression from muscle or a hematoma.

The video can be found here: https://youtu.be/FlBE5SFa2Gw.

Restricted access

Owoicho Adogwa, Jacob M. Buchowski, Lawrence G. Lenke, Maksim A. Shlykov, Mostafa El Dafrawy, Thamrong Lertudomphonwanit, Mitchel R. Obey, Jonathan Koscso, Munish C. Gupta and Keith H. Bridwell

OBJECTIVE

Pseudarthrosis is a common complication of long-segment fusions after surgery for correction of adult spinal deformity (ASD). Interbody fusions are frequently used at the caudal levels of long-segment spinal deformity constructs as adjuncts for anterior column support. There is a paucity of literature comparing rod fracture rates (proxy for pseudarthrosis) in patients undergoing transforaminal lumbar interbody fusion (TLIF) versus anterior lumbar interbody fusion (ALIF) at the caudal levels of the long spinal deformity construct. In this study the authors sought to compare rod fracture rates in patients undergoing surgery for correction of ASD with TLIF versus ALIF at the caudal levels of long spinal deformity constructs.

METHODS

We reviewed clinical records of patients who underwent surgery for correction of ASD between 2008 and 2014 at a single institution. Data including demographics, comorbidities, and indications for surgery, as well as postoperative variables, were collected for each patient. All patients had a minimum 2-year follow-up. Patients were dichotomized into two groups for comparison on the basis of undergoing a TLIF versus an ALIF procedure at the caudal levels of long spinal deformity constructs. The primary outcome of interest was the rate of rod fractures.

RESULTS

A total of 198 patients (TLIF 133 patients; ALIF 65 patients) underwent a long-segment fusion to the sacrum with iliac fixation. The mean ± standard deviation follow-up period was 62.23 ± 29.26 months. Baseline demographic variables were similar in both patient groups. There were no significant differences between groups in the severity of the baseline sagittal plane deformity (i.e., baseline lumbar-pelvic parameters) or the final deformity correction achieved. Mean total recombinant human bone morphogenetic protein 2 (rhBMP-2) dose for L1–sacrum fusion was significantly higher in the ALIF (100 mg) than in the TLIF (62 mg) group. The overall rod failure rate (cases with rod fracture/total cases) within this case series was 19.19% (38/198); 10.60% (21/198) were unilateral rod fractures and 8.58% (17/198) were bilateral rod fractures. At last clinical follow-up, there were no statistically significant differences in bilateral rod fracture rates between the group of patients who had a TLIF procedure and the group who had an ALIF procedure at the caudal levels of the long spinal deformity constructs (TLIF 10.52% vs ALIF 4.61%, p = 0.11). However, the incidence rate (cases per patient follow-up years) for bilateral rod fractures was significantly higher in the TLIF than in the ALIF cohort (TLIF 2.20% vs ALIF 0.70%, p < 0.0001). The reoperation rate for rod fractures was similar between the patient groups (p = 0.40).

CONCLUSIONS

Although both ALIF and TLIF procedures at the caudal levels of long spinal deformity constructs achieved similar and satisfactory deformity correction, ALIFs were associated with a lower rod fracture incidence rate. There were no differences between groups in the prevalence of rod fracture or revision surgery, however, and both groups had low bilateral rod fracture prevalence and incidence rates. One technique is not clearly superior to the other.

Restricted access

Mostafa H. El Dafrawy, Owoicho Adogwa, Adam M. Wegner, Nicholas A. Pallotta, Michael P. Kelly, Khaled M. Kebaish, Keith H. Bridwell and Munish C. Gupta

OBJECTIVE

In this study, the authors’ goal was to determine the intra- and interobserver reliability of a new classification system that allows the description of all possible constructs used across three-column osteotomies (3COs) in terms of rod configuration and density.

METHODS

Thirty-five patients with multirod constructs (MRCs) across a 3CO were classified by two spinal surgery fellows according to the new system, and then were reclassified 2 weeks later. Constructs were classified as follows: the number of rods across the osteotomy site followed by a letter corresponding to the type of rod configuration: “M” is for a main rod configuration, defined as a single rod spanning the osteotomy. “L” is for linked rod configurations, defined as 2 rods directly connected to each other at the osteotomy site. “S” is for satellite rod configurations, which were defined as a short rod independent of the main rod with anchors above and below the 3CO. “A” is for accessory rods, defined as an additional rod across the 3CO attached to main rods but not attached to any anchors across the osteotomy site. “I” is for intercalary rod configurations, defined as a rod connecting 2 separate constructs across the 3CO, without the intercalary rod itself attached to any anchors across the osteotomy site. The intra- and interobserver reliability of this classification system was determined.

RESULTS

A sample estimation for validation assuming two readers and 35 subjects results in a two-sided 95% confidence interval with a width of 0.19 and a kappa value of 0.8 (SD 0.3). The Fleiss kappa coefficient (κ) was used to calculate the degree of agreement between interrater and intraobserver reliability. The interrater kappa coefficient was 0.3, and the intrarater kappa coefficient was 0.63 (good reliability). This scenario represents a high degree of agreement despite a low kappa coefficient. Correct observations by both observers were 34 of 35 and 33 of 35 at both time points. Misclassification was related to difficulty in determining connectors versus anchors.

CONCLUSIONS

MRCs across 3COs have variable rod configurations. Currently, no classification system or agreement on nomenclature exists to define the configuration of rods across 3COs. The authors present a new, comprehensive MRC classification system with good inter- and intraobserver reliability and a high degree of agreement that allows for a standardized description of MRCs across 3COs.

Full access

Alex Soroceanu, Douglas C. Burton, Bassel Georges Diebo, Justin S. Smith, Richard Hostin, Christopher I. Shaffrey, Oheneba Boachie-Adjei, Gregory M. Mundis Jr., Christopher Ames, Thomas J. Errico, Shay Bess, Munish C. Gupta, Robert A. Hart, Frank J. Schwab, Virginie Lafage and International Spine Study Group

OBJECT

Adult spinal deformity (ASD) surgery is known for its high complication rate. This study examined the impact of obesity on complication rates, infection, and patient-reported outcomes in patients undergoing surgery for ASD.

METHODS

This study was a retrospective review of a multicenter prospective database of patients with ASD who were treated surgically. Patients with available 2-year follow-up data were included. Obesity was defined as having a body mass index (BMI) ≥ 30 kg/m2. Data collected included complications (total, minor, major, implant-related, radiographic, infection, revision surgery, and neurological injury), estimated blood loss (EBL), operating room (OR) time, length of stay (LOS), and patient-reported questionnaires (Oswestry Disability Index [ODI], Short Form-36 [SF-36], and Scoliosis Research Society [SRS]) at baseline and at 6 weeks, 1 year, and 2 years postoperatively. The impact of obesity was studied using multivariate modeling, accounting for confounders.

RESULTS

Of 241 patients who satisfied inclusion criteria, 175 patients were nonobese and 66 were obese. Regression models showed that obese patients had a higher overall incidence of major complications (IRR 1.54, p = 0.02) and wound infections (odds ratio 4.88, p = 0.02). Obesity did not increase the number of minor complications (p = 0.62), radiographic complications (p = 0.62), neurological complications (p = 0.861), or need for revision surgery (p = 0.846). Obesity was not significantly correlated with OR time (p = 0.23), LOS (p = 0.9), or EBL (p = 0.98). Both groups experienced significant improvement overtime, as measured on the ODI (p = 0.0001), SF-36 (p = 0.0001), and SRS (p = 0.0001) questionnaires. However, the overall magnitude of improvement was less for obese patients (ODI, p = 0.0035; SF-36, p = 0.0012; SRS, p = 0.022). Obese patients also had a lower rate of improvement over time (SRS, p = 0.0085; ODI, p = 0.0001; SF-36, p = 0.0001).

CONCLUSIONS

This study revealed that obese patients have an increased risk of complications following ASD correction. Despite these increased complications, obese patients do benefit from surgical intervention; however, their improvement in health-related quality of life (HRQL) is less than that of nonobese patients.

Full access

Blake N. Staub, Renaud Lafage, Han Jo Kim, Christopher I. Shaffrey, Gregory M. Mundis Jr., Richard Hostin, Douglas Burton, Lawrence Lenke, Munish C. Gupta, Christopher Ames, Eric Klineberg, Shay Bess, Frank Schwab, Virginie Lafage and the International Spine Study Group

OBJECTIVE

Numerous studies have attempted to delineate the normative value for T1S−CL (T1 slope minus cervical lordosis) as a marker for both cervical deformity and a goal for correction similar to how PI-LL (pelvic incidence–lumbar lordosis) mismatch informs decision making in thoracolumbar adult spinal deformity (ASD). The goal of this study was to define the relationship between T1 slope (T1S) and cervical lordosis (CL).

METHODS

This is a retrospective review of a prospective database. Surgical ASD cases were initially analyzed. Analysis across the sagittal parameters was performed. Linear regression analysis based on T1S was used to provide a clinically applicable equation to predict CL. Findings were validated using the postoperative alignment of the ASD patients. Further validation was then performed using a second, normative database. The range of normal alignment associated with horizontal gaze was derived from a multilinear regression on data from asymptomatic patients.

RESULTS

A total of 103 patients (mean age 54.7 years) were included. Analysis revealed a strong correlation between T1S and C0–7 lordosis (r = 0.886), C2–7 lordosis (r = 0.815), and C0–2 lordosis (r = 0.732). There was no significant correlation between T1S and T1S−CL. Linear regression analysis revealed that T1S−CL assumed a constant value of 16.5° (R2 = 0.664, standard error 2°). These findings were validated on the postoperative imaging (mean absolute error [MAE] 5.9°). The equation was then applied to the normative database (MAE 6.7° controlling for McGregor slope [MGS] between −5° and 15°). A multilinear regression between C2–7, T1S, and MGS demonstrated a range of T1S−CL between 14.5° and 26.5° was necessary to maintain horizontal gaze.

CONCLUSIONS

Normative CL can be predicted via the formula CL = T1S − 16.5° ± 2°. This implies a threshold of deformity and aids in providing a goal for surgical correction. Just as pelvic incidence (PI) can be used to determine the ideal LL, T1S can be used to predict ideal CL. This formula also implies that a kyphotic cervical alignment is to be expected for individuals with a T1S < 16.5°.

Full access

Emmanuelle Ferrero, Barthelemy Liabaud, Jensen K. Henry, Christopher P. Ames, Khaled Kebaish, Gregory M. Mundis, Richard Hostin, Munish C. Gupta, Oheneba Boachie-Adjei, Justin S. Smith, Robert A. Hart, Ibrahim Obeid, Bassel G. Diebo, Frank J. Schwab and Virginie Lafage

OBJECTIVE

Three-column osteotomy (3CO) is a demanding technique that is performed to correct sagittal spinal malalignment. However, the impact of the 3CO level on pelvic or truncal sagittal correction remains unclear. In this study, the authors assessed the impact of 3CO level and postoperative apex of lumbar lordosis on sagittal alignment correction, complications, and revisions.

METHODS

In this retrospective study of a multicenter spinal deformity database, radiographic data were analyzed at baseline and at 1- and 2-year follow-up to quantify spinopelvic alignment, apex of lordosis, and resection angle. The impact of 3CO level and apex level of lumbar lordosis on the sagittal correction was assessed. Logistic regression analyses were performed, controlling for cofounders, to investigate the effects of 3CO level and apex level on intraoperative and postoperative complications as well as on the need for subsequent revision surgery.

RESULTS

A total of 468 patients were included (mean age 60.8 years, mean body mass index 28.1 kg/m2); 70% of patients were female. The average 3CO resection angle was 25.1° and did not significantly differ with regard to 3CO level. There were no significant correlations between the 3CO level and amount of sagittal vertical axis or pelvic tilt correction. The postoperative apex level significantly correlated with greater correction of pelvic tilt (2° per more caudal level, R = −0.2, p = 0.006). Lower-level 3CO significantly correlated with revisions for pseudarthrosis (OR = 3.88, p = 0.001) and postoperative motor deficits (OR = 2.02, p = 0.026).

CONCLUSIONS

In this study, a more caudal lumbar 3CO level did not lead to greater sagittal vertical axis correction. The postoperative apex of lumbar lordosis significantly impacted pelvic tilt. 3CO levels that were more caudal were associated with more postoperative motor deficits and revisions.

Full access

Shayan Fakurnejad, Justin K. Scheer, Virginie Lafage, Justin S. Smith, Vedat Deviren, Richard Hostin, Gregory M. Mundis Jr., Douglas C. Burton, Eric Klineberg, Munish Gupta, Khaled Kebaish, Christopher I. Shaffrey, Shay Bess, Frank Schwab, Christopher P. Ames and The International Spine Study Group

OBJECT

Three-column osteotomies (3COs) are technically challenging techniques for correcting severe rigid spinal deformities. The impact of these interventions on outcomes reaching minimum clinically important difference (MCID) or substantial clinical benefit (SCB) is unclear. The objective of this study was to determine the rates of MCID and SCB in standard health-related quality of life (HRQOL) measures after 3COs in patients with adult spinal deformity (ASD). The impacts of location of the uppermost instrumented vertebra (UIV) on clinical outcomes and of maintenance on sagittal correction at 2 years postoperatively were also examined.

METHODS

The authors conducted a retrospective multicenter analysis of the records from adult patients who underwent 3CO with complete 2-year radiographic and clinical follow-ups. Cases were categorized according to established radiographic thresholds for pelvic tilt (> 22°), sagittal vertical axis (> 4.7 cm), and the mismatch between pelvic incidence and lumbar lordosis (> 11°). The cases were also analyzed on the basis of a UIV in the upper thoracic (T1–6) or thoracolumbar (T9–L1) region. Patient-reported outcome measures evaluated preoperatively and 2 years postoperatively included Oswestry Disability Index (ODI) scores, the Physical Component Summary and Mental Component Summary (MCS) scores of the 36-Item Short Form Health Survey, and Scoliosis Research Society-22 questionnaire (SRS-22) scores. The percentages of patients whose outcomes for these measures met MCID and SCB were compared among the groups.

RESULTS

Data from 140 patients (101 women and 39 men) were included in the analysis; the average patient age was 57.3 ± 12.4 years (range 20–82 years). Of these patients, 94 had undergone only pedicle subtraction osteotomy (PSO) and 42 only vertebral column resection (VCR); 113 patients had a UIV in the upper thoracic (n = 63) orthoracolumbar region (n = 50). On average, 2 years postoperatively the patients had significantly improved in all HRQOL measures except the MCS score. For the entire patient cohort, the improvements ranged from 57.6% for the SRS-22 pain score MCID to 24.4% for the ODI score SCB. For patients undergoing PSO or VCR, the likelihood of their outcomes reaching MCID or SCB ranged from 24.3% to 62.3% and from 16.2% to 47.8%, respectively. The SRS-22 self-image score of patients who had a UIV in the upper thoracic region reached MCID significantly more than that of patients who had a UIV in the thoracolumbar region (70.6% vs 41.9%, p = 0.0281). All other outcomes were similar for UIVs of upper thoracic and thoracolumbar regions. Comparison of patients whose spines were above or below the radiographic thresholds associated with disability indicated similar rates of meeting MCID and SCB for HRQOL at the 2-year follow-up.

CONCLUSIONS

Outcomes for patients having UIVs in the upper thoracic region were no more likely to meet MCID or SCB than for those having UIVs in the thoracolumbar region, except for the MCID in the SRS-22 self-image measure. The HRQOL outcomes in patients who had optimal sagittal correction according to radiographic thresholds determined preoperatively were not significantly more likely to reach MCID or SCB at the 2-year follow-up. Future work needs to determine whether the Schwab preoperative radiographic thresholds for severe disability apply in postoperative settings.

Restricted access

Justin S. Smith, Manish Singh, Eric Klineberg, Christopher I. Shaffrey, Virginie Lafage, Frank J. Schwab, Themistocles Protopsaltis, David Ibrahimi, Justin K. Scheer, Gregory Mundis Jr., Munish C. Gupta, Richard Hostin, Vedat Deviren, Khaled Kebaish, Robert Hart, Douglas C. Burton, Shay Bess and Christopher P. Ames

Object

Increased sagittal vertical axis (SVA) correlates strongly with pain and disability for adults with spinal deformity. A subset of patients with sagittal spinopelvic malalignment (SSM) have flatback deformity (pelvic incidence–lumbar lordosis [PI-LL] mismatch > 10°) but remain sagittally compensated with normal SVA. Few data exist for SSM patients with flatback deformity and normal SVA. The authors' objective was to compare baseline disability and treatment outcomes for patients with compensated (SVA < 5 cm and PI-LL mismatch > 10°) and decompensated (SVA > 5 cm) SSM.

Methods

The study was a multicenter, prospective analysis of adults with spinal deformity who consecutively underwent surgical treatment for SSM. Inclusion criteria included age older than 18 years, presence of adult spinal deformity with SSM, plan for surgical treatment, and minimum 1-year follow-up data. Patients with SSM were divided into 2 groups: those with compensated SSM (SVA < 5 cm and PI-LL mismatch > 10°) and those with decompensated SSM (SVA ≥ 5 cm). Baseline and 1-year follow-up radiographic and health-related quality of life (HRQOL) outcomes included Oswestry Disability Index, Short Form–36 scores, and Scoliosis Research Society–22 scores. Percentages of patients achieving minimal clinically important difference (MCID) were also assessed.

Results

A total of 125 patients (27 compensated and 98 decompensated) met inclusion criteria. Compared with patients in the compensated group, patients in the decompensated group were older (62.9 vs 55.1 years; p = 0.004) and had less scoliosis (43° vs 54°; p = 0.002), greater SVA (12.0 cm vs 1.7 cm; p < 0.001), greater PI-LL mismatch (26° vs 20°; p = 0.013), and poorer HRQOL scores (Oswestry Disability Index, Short Form-36 physical component score, Scoliosis Research Society-22 total; p ≤ 0.016). Although these baseline HRQOL differences between the groups reached statistical significance, only the mean difference in Short Form–36 physical component score reached threshold for MCID. Compared with baseline assessment, at 1 year after surgery improvement was noted for patients in both groups for mean SVA (compensated –1.1 cm, decompensated +4.8 cm; p ≤ 0.009), mean PI-LL mismatch (compensated 6°, decompensated 5°; p < 0.001), and all HRQOL measures assessed (p ≤ 0.005). No significant differences were found between the compensated and decompensated groups in the magnitude of HRQOL score improvement or in the percentages of patients achieving MCID for each of the outcome measures assessed.

Conclusions

Decompensated SSM patients with elevated SVA experience significant disability; however, the amount of disability in compensated SSM patients with flatback deformity caused by PI-LL mismatch but normal SVA is underappreciated. Surgical correction of SSM demonstrated similar radiographic and HRQOL score improvements for patients in both groups. Evaluation of SSM should extend beyond measuring SVA. Among patients with concordant pain and disability, PI-LL mismatch must be evaluated for SSM patients and can be considered a primary indication for surgery.

Restricted access

Justin K. Scheer, Virginie Lafage, Justin S. Smith, Vedat Deviren, Richard Hostin, Ian M. McCarthy, Gregory M. Mundis, Douglas C. Burton, Eric Klineberg, Munish C. Gupta, Khaled M. Kebaish, Christopher I. Shaffrey, Shay Bess, Frank Schwab, Christopher P. Ames and the International Spine Study Group (ISSG)

Object

Spinal osteotomies for adult spinal deformity correction may include resection of all 3 spinal columns (pedicle subtraction osteotomy [PSO] and vertebral column resection [VCR]). The relationship between patient age and health-related quality of life (HRQOL) outcomes for patients undergoing major spinal deformity correction via PSO or VCR has not been well characterized. The goal of this study was to characterize that relationship.

Methods

This study was a retrospective review of 374 patients who had undergone a 3-column osteotomy (299 PSOs and 75 VCRs) and were part of a prospectively collected, multicenter adult spinal deformity database. The consecutively enrolled patients were drawn from 11 sites across the United States. Health-related QOL outcomes, according to the visual analog scale (VAS), Oswestry Disability Index (ODI), 36-Item Short-Form Health Survey (SF-36, physical component score [PCS] and mental component score), and Scoliosis Research Society-22 questionnaire (SRS), were evaluated preoperatively and 1 and 2 years postoperatively. Differences and correlations between patient age and HRQOL outcomes were investigated. Age groupings included young (age ≤ 45 years), middle aged (age 46–64 years), and elderly (age ≥ 65 years).

Results

In patients who had undergone PSO, age significantly correlated (Spearman's correlation coefficient) with the 2-year ODI (ρ = 0.24, p = 0.0450), 2-year SRS function score (ρ = 0.30, p = 0.0123), and 2-year SRS total score (ρ = 0.30, p = 0.0133). Among all patients (PSO+VCR), the preoperative PCS and ODI in the young group were significantly higher and lower, respectively, than those in the elderly. Among the PSO patients, the elderly group had much greater improvement than the young group in the 1- and 2-year PCS, 2-year ODI, and 2-year SRS function and total scores. Among the VCR patients, the young age group had much greater improvement than the elderly in the 1-year SRS pain score, 1-year PCS, 2-year PCS, and 2-year ODI. There was no significant difference among all the age groups as regards the likelihood of reaching a minimum clinically important difference (MCID) within each of the HRQOL outcomes (p > 0.05 for all). Among the PSO patients, the elderly group was significantly more likely than the young to reach an MCID for the 1-year PCS (61% vs 21%, p = 0.0077) and the 2-year PCS (67% vs 17%, p = 0.0054), SRS pain score (57% vs 20%, p = 0.0457), and SRS function score (62% vs 20%, p = 0.0250). Among the VCR patients, the young group was significantly more likely than the elderly patients to reach an MCID for the 1-year (100% vs 20%, p = 0.0036) and 2-year (100% vs 0%, p = 0.0027) PCS scores and 1-year (60% vs 0%, p = 0.0173) and 2-year (70% vs 0%, p = 0.0433) SRS pain scores.

Conclusions

The PSO and VCR are not equivalent surgeries in terms of HRQOL outcomes and patient age. Among patients who underwent PSO, the elderly group started with more preoperative disability than the younger patients but had greater improvements in HRQOL outcomes and was more likely to reach an MCID at 1 and 2 years after treatment. Among those who underwent VCR, all had similar preoperative disabilities, but the younger patients had greater improvements in HRQOL outcomes and were more likely to reach an MCID at 1 and 2 years after treatment.

Restricted access

Alan H. Daniels, Daniel B. C. Reid, Wesley M. Durand, D. Kojo Hamilton, Peter G. Passias, Han Jo Kim, Themistocles S. Protopsaltis, Virginie Lafage, Justin S. Smith, Christopher I. Shaffrey, Munish Gupta, Eric Klineberg, Frank Schwab, Douglas Burton, Shay Bess, Christopher P. Ames, Robert A. Hart and the International Spine Study Group

OBJECTIVE

Optimal patient selection for upper-thoracic (UT) versus lower-thoracic (LT) fusion during adult spinal deformity (ASD) correction is challenging. Radiographic and clinical outcomes following UT versus LT fusion remain incompletely understood. The purposes of this study were: 1) to evaluate demographic, radiographic, and surgical characteristics associated with choice of UT versus LT fusion endpoint; and 2) to evaluate differences in radiographic, clinical, and health-related quality of life (HRQOL) outcomes following UT versus LT fusion for ASD.

METHODS

Retrospective review of a prospectively collected multicenter ASD database was performed. Patients with ASD who underwent fusion from the sacrum/ilium to the LT (T9–L1) or UT (T1–6) spine were compared for demographic, radiographic, and surgical characteristics. Outcomes including proximal junctional kyphosis (PJK), reoperation, rod fracture, pseudarthrosis, overall complications, 2-year change in alignment parameters, and 2-year HRQOL metrics (Lumbar Stiffness Disability Index, Scoliosis Research Society-22r questionnaire, Oswestry Disability Index) were compared after controlling for confounding factors via multivariate analysis.

RESULTS

Three hundred three patients (169 LT, 134 UT) were evaluated. Independent predictors of UT fusion included greater thoracic kyphosis (odds ratio [OR] 0.97 per degree, p = 0.0098), greater coronal Cobb angle (OR 1.06 per degree, p < 0.0001), and performance of a 3-column osteotomy (3-CO; OR 2.39, p = 0.0351). While associated with longer operative times (ratio 1.13, p < 0.0001) and greater estimated blood loss (ratio 1.31, p = 0.0018), UT fusions resulted in greater sagittal vertical axis improvement (−59.5 vs −41.0 mm, p = 0.0035) and lower PJK rates (OR 0.49, p = 0.0457). No significant differences in postoperative HRQOL measures, reoperation, or overall complication rates were detected between groups (all p > 0.1).

CONCLUSIONS

Greater deformity and need for 3-CO increased the likelihood of UT fusion. Despite longer operative times and greater blood loss, UT fusions resulted in better sagittal correction and lower 2-year PJK rates following surgery for ASD. While continued surveillance is necessary, this information may inform patient counseling and surgical decision-making.