Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Moneeb Ehtesham x
Clear All Modify Search
Free access

Imad Saeed Khan and Moneeb Ehtesham

Glioblastoma multiforme (GBM) is the most common primary brain tumor and is notorious for its poor prognosis. The highly invasive nature of GBM and its inherent resistance to therapy lead to very high rates of recurrence. Recently, a small cohort of tumor cells, called cancer stem cells (CSCs), has been recognized as a subset of tumor cells with self-renewal ability and multilineage capacity. These properties, along with the remarkable tumorigenicity of CSCs, are thought to account for the high rates of tumor recurrence after treatment. Recent research has been geared toward understanding the unique biological characteristics of CSCs to enable development of targeted therapy. Strategies include inhibition of CSC-specific pathways and receptors; agents that increase sensitivity of CSCs to chemotherapy and radiotherapy; CSC differentiation agents; and CSC-specific immunotherapy, virotherapy, and gene therapy. These approaches could inform the development of newer therapeutics for GBM.

Full access

Moneeb Ehtesham, Charles B. Stevenson and Reid C. Thompson

The prognosis for patients with malignant glioma, which is the most common primary intracranial neoplasm, remains dismal despite significant progress in neurooncological therapies and technology. This is largely due to the inability of current treatment strategies to address the highly invasive nature of this disease. Malignant glial cells often disseminate throughout the brain, making it exceedingly difficult to target and treat all intracranial neoplastic foci, with the result that tumor recurrence is inevitable despite aggressive surgery and adjuvant radiotherapy and/or chemotherapy. The use of neural stem cells (NSCs) as delivery vehicles for tumor-toxic molecules represents the first experimental strategy aimed specifically at targeting disseminated tumor pockets. Investigators have demonstrated that NSCs possess robust tropism for infiltrating tumor cells, and that they can be used to deliver therapeutic agents directly to tumor satellites, with significant therapeutic benefit. With the aim of developing these findings into a clinically viable technology that would not be hindered by ethical and tissue rejection–related concerns, the use of adult tissue–derived stem cells has recently been explored. These technologies represent important progress in the development of a treatment strategy that can specifically target disseminated neoplastic pockets within the brain. Despite encouraging results in preclinical models, however, there are significant impediments that must be overcome prior to clinical implementation of this strategy. Key among these are an inadequate understanding of the specific tropic mechanisms that govern NSC migration toward invasive tumor, and the need to refine the processes used to generate tumor-tropic stem cells from adult tissues so that this can be accomplished in a clinically practicable fashion. Despite these limitations, the use of stem cell therapies for brain tumors holds significant promise and may emerge as an important therapeutic modality for patients with malignant glioma.

Restricted access

Imad S. Khan, Travis R. Ladner, Komal F. Satti, Moneeb Ehtesham, Lori C. Jordan and Robert J. Singer

Cerebral sinus venous thrombosis (CSVT) is a relatively rare but potentially devastating disease. Medical management of CSVT with systemic anticoagulation has been the mainstay treatment strategy with these patients. However, some patients may not respond to this treatment or may present with very severe symptoms indicating more aggressive management strategies. The authors present the case of a pediatric patient who presented with severe CSVT, who underwent successful recanalization with endovascular tissue plasminogen activator (tPA) and abciximab. To the authors' knowledge there are no cases of endovascular thrombolysis for CSVT described in the literature in which abciximab has been used in conjunction with tPA. The authors also review the literature regarding the agents used and outcome in pediatric patients with CSVT after endovascular thrombolysis. The use of abciximab in conjunction with tPA may be considered in patients whose blood is hypercoagulable and in whom the treatment strategy is to obtain acute recanalization and long-term venous patency. However, the use of adjunctive agents increases the risk of hemorrhagic complications and must be done judiciously.

Full access

Imad S. Khan, Mitchell Odom, Moneeb Ehtesham, Daniel Colvin, C. Chad Quarles, BethAnn McLaughlin and Robert J. Singer


Matrix metalloprotease-9 (MMP-9) plays a critical role in infarct progression, blood-brain barrier (BBB) disruption, and vasogenic edema. While systemic administration of MMP-9 inhibitors has shown neuroprotective promise in ischemic stroke, there has been little effort to incorporate these drugs into endovascular modalities. By modifying the rodent middle cerebral artery occlusion (MCAO) model to allow local intraarterial delivery of drugs, one has the ability to mimic endovascular delivery of therapeutics. Using this model, the authors sought to maximize the protective potential of MMP-9 inhibition by intraarterial administration of an MMP-9 inhibitor, norcantharidin (NCTD).


Spontaneously hypertensive rats were subjected to 90-minute MCAO followed immediately by local intraarterial administration of NCTD. The rats’ neurobehavioral performances were scored according to the ladder rung walking test results and the Garcia neurological test for as long as 7 days after stroke. MRI was also conducted 24 hours after the stroke to assess infarct volume and BBB disruption. At the end of the experimental protocol, rat brains were used for active MMP-9 immunohistochemical analysis to assess the degree of MMP-9 inhibition.


NCTD-treated rats showed significantly better neurobehavioral scores for all days tested. MR images also depicted significantly decreased infarct volumes and BBB disruption 24 hours after stroke. Inhibition of MMP-9 expression in the ischemic region was depicted on immunohistochemical analysis, wherein treated rats showed decreased active MMP-9 staining compared with controls.


Intraarterial NCTD significantly improved outcome when administered at the time of reperfusion in a spontaneously hypertensive rat stroke model. This study suggests that supplementing endovascular revascularization with local neuroprotective drug therapy may be a viable therapeutic strategy.