Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Mohammed Alshareef x
  • Refine by Access: all x
Clear All Modify Search
Free access

Thomas Larrew, Mohammed Alshareef, Robert F. Murphy, Ramin Eskandari, and Libby Kosnik Infinger

OBJECTIVE

Although the advent of magnetic growing rod technology for scoliosis has provided a means to bypass multiple hardware lengthening operations, it is important to be aware that many of these same patients have a codiagnosis of hydrocephalus with magnet-sensitive programmable ventricular shunts. As the magnetic distraction of scoliosis rods has not previously been described to affect the shunt valve setting, the authors conducted an investigation to characterize the interaction between the two devices.

METHODS

In this ex vivo study, the authors carried out 360 encounters between four different shunt valve types at varying distances from the magnetic external remote control (ERC) used to distract the growing rods. Valve settings were examined before and after every interaction with the remote control to determine if there was a change in the setting.

RESULTS

The Medtronic Strata and Codman Hakim valves were found to have setting changes at distances of 3 and 6 inches but not at 12 inches. The Aesculap proGAV and Codman Certas valves, typically described as MRI-resistant, did not have any setting changes due to the magnetic ERC regardless of distance.

CONCLUSIONS

Although it is not necessary to check a shunt valve after every magnetic distraction of scoliosis growing rods, if there is concern that the magnetic ERC may have been within 12 inches (30 cm) of a programmable ventricular shunt valve, the valve should be checked at the bedside with a programmer or with a skull radiograph along with postdistraction scoliosis radiographs.

Restricted access

Chelsea Shope, Mohammed Alshareef, Thomas Larrew, Christopher Bolling, Justin Reagan, Milad Yazdani, Maria Spampinato, and Ramin Eskandari

OBJECTIVE

Traumatic brain injury (TBI) is a prevalent pediatric pathology in the modern emergency department. Computed tomography (CT) is utilized for detection of TBI and can result in cumulatively high radiation exposure. Recently, a fast brain magnetic resonance imaging (fbMRI) protocol has been employed for rapid imaging of hydrocephalus in pediatric patients. The authors investigate the utility of a modified trauma-focused fbMRI (t-fbMRI) protocol as an alternative to surveillance CT in the setting of acute TBI in pediatric patients, thus reducing radiation exposure while improving diagnostic yield.

METHODS

A retrospective review was performed at the authors’ institution for all pediatric patients who had undergone t-fbMRI within 72 hours of an initial CT scan, using a 1.5- or 3-T MR scanner for trauma indications. Forty patients met the study inclusion criteria. The authors performed a comparison of findings on the reads of CT and fbMRI, and a board-certified neuroradiologist conducted an independent review of both modalities.

RESULTS

T-fbMRI outperformed CT in specificity, sensitivity, and negative predictive value for all injury pathologies measured, except for skull fractures. T-fbMRI demonstrated a sensitivity of 100% in the detection of extraaxial bleed, intraventricular hemorrhage, and subarachnoid hemorrhage and had a sensitivity of 78% or greater for epidural hematoma, subdural hematoma, and intraparenchymal hemorrhage. T-fbMRI yielded a specificity of 100% for all types of intracranial hemorrhages, with a corresponding negative predictive value that exceeded that for CT.

CONCLUSIONS

In pediatric populations, the t-fbMRI protocol provides a valid alternative to CT in the surveillance of TBI and intracranial hemorrhage. Although not as sensitive in the detection of isolated skull fractures, t-fbMRI can be used to monitor pathologies implicated in TBI patients while minimizing radiation exposure from traditional surveillance imaging.

Restricted access

Brian F. Saway, Mohammed Alshareef, Orgest Lajthia, Coby Cunningham, Chelsea Shope, Jaime L. Martinez, and Stephen P. Kalhorn

OBJECTIVE

Thoracic disc herniations (TDHs) are a challenging pathology. A variety of surgical techniques have been used to achieve spinal cord decompression. This series elucidates the versatility, efficacy, and safety of the partial transpedicular approach with the use of intraoperative ultrasound and ultrasonic aspiration for resection of TDHs of various sizes, locations, and consistencies. This technique can be deployed to safely remove all TDHs.

METHODS

A retrospective review was performed of patients who underwent a thoracic discectomy via the partial transpedicular approach between January 2014 and December 2020 by a single surgeon. Variables reviewed included demographics, perioperative imaging, and functional outcome scores.

RESULTS

A total of 43 patients (53.5% female) underwent 54 discectomies. The most common presenting symptoms were myelopathy (86%), motor weakness (72%), and sensory deficit (65%) with a symptom duration of 10.4 ± 11.6 months. A total of 21 (38.9%) discs were fully calcified on imaging and 15 (27.8%) were partially calcified. A total of 36 (66.7%) were giant TDHs (> 40% canal compromise). The average operative time was 197.2 ± 77.1 minutes with an average blood loss of 238.8 ± 250 ml. Six patients required ICU stays. Hospital length of stay was 4.40 ± 3.4 days. Of patients with follow-up MRI, 38 of 40 (95%) disc levels demonstrated < 20% residual disc. Postoperative Frankel scores (> 3 months) were maintained or improved for all patients, with 28 (65.1%) patients having an increase of 1 grade or more on their Frankel score. Six (14%) patients required repeat surgery, 2 of which were due to reherniation, 2 were from adjacent-level herniation, and 2 others were from wound problems. Patients with calcified TDHs had similar improvement in Frankel grade compared to patients without calcified TDH. Additionally, improvement in intraoperative neuromonitoring was associated with a greater improvement in Frankel grade.

CONCLUSIONS

The authors demonstrate a minimally disruptive, posterior approach that uses intraoperative ultrasound and ultrasonic aspiration with excellent outcomes and a complication profile similar to or better than other reported case series. This posterior approach is a valuable complement to the spine surgeon’s arsenal for the confident tackling of all TDHs.