Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Mirjam Renovanz x
Clear All Modify Search
Free access

Naureen Keric, Christian Doenitz, Amer Haj, Izabela Rachwal-Czyzewicz, Mirjam Renovanz, Dominik M. A. Wesp, Stephan Boor, Jens Conrad, Alexander Brawanski, Alf Giese and Sven R. Kantelhardt

Objective

Recent studies have investigated the role of spinal image guidance for pedicle screw placement. Many authors have observed an elevated placement accuracy and overall improvement of outcome measures. This study assessed a bi-institutional experience following introduction of the Renaissance miniature robot for spinal image guidance in Europe.

Methods

The medical records and radiographs of all patients who underwent robot-guided implantation of spinal instrumentation using the novel system (between October 2011 and March 2015 in Mainz and February 2014 and February 2016 in Regensburg) were reviewed to determine the efficacy and safety of the newly introduced robotic system. Screw position accuracy, complications, exposure durations to intraoperative radiation, and reoperation rate were assessed.

Results

Of the 413 surgeries that used robotic guidance, 406 were via a minimally invasive approach. In 7 cases the surgeon switched to conventional screw placement, using a midline approach, due to referencing problems. A total of 2067 screws were implanted using robotic guidance, and 1857 screws were evaluated by postoperative CT. Of the 1857 screws, 1799 (96.9%) were classified as having an acceptable or good position, whereas 38 screws (2%) showed deviations of 3–6 mm and 20 screws (1.1%) had deviations > 6 mm. Nine misplaced screws, implanted in 7 patients, required revision surgery, yielding a screw revision rate of 0.48% of the screws and 7 of 406 (1.7%) of the patients. The mean ± SD per-patient intraoperative fluoroscopy exposure was 114.4 (± 72.5) seconds for 5.1 screws on average and any further procedure required. Perioperative and direct postoperative complications included hemorrhage (2 patients, 0.49%) and wound infections necessitating surgical revision (20 patients, 4.9%).

Conclusions

The hexapod miniature robotic device proved to be a safe and robust instrument in all situations, including those in which patients were treated on an emergency basis. Placement accuracy was high; peri- and early postoperative complication rates were found to be lower than rates published in other series of percutaneous screw placement techniques. Intraoperative radiation exposure was found to be comparable to published values for other minimally invasive and conventional approaches.

Restricted access

Victor E. Staartjes, Morgan Broggi, Costanza Maria Zattra, Flavio Vasella, Julia Velz, Silvia Schiavolin, Carlo Serra, Jiri Bartek Jr., Alexander Fletcher-Sandersjöö, Petter Förander, Darius Kalasauskas, Mirjam Renovanz, Florian Ringel, Konstantin R. Brawanski, Johannes Kerschbaumer, Christian F. Freyschlag, Asgeir S. Jakola, Kristin Sjåvik, Ole Solheim, Bawarjan Schatlo, Alexandra Sachkova, Hans Christoph Bock, Abdelhalim Hussein, Veit Rohde, Marike L. D. Broekman, Claudine O. Nogarede, Cynthia M. C. Lemmens, Julius M. Kernbach, Georg Neuloh, Oliver Bozinov, Niklaus Krayenbühl, Johannes Sarnthein, Paolo Ferroli, Luca Regli, Martin N. Stienen and FEBNS

OBJECTIVE

Decision-making for intracranial tumor surgery requires balancing the oncological benefit against the risk for resection-related impairment. Risk estimates are commonly based on subjective experience and generalized numbers from the literature, but even experienced surgeons overestimate functional outcome after surgery. Today, there is no reliable and objective way to preoperatively predict an individual patient’s risk of experiencing any functional impairment.

METHODS

The authors developed a prediction model for functional impairment at 3 to 6 months after microsurgical resection, defined as a decrease in Karnofsky Performance Status of ≥ 10 points. Two prospective registries in Switzerland and Italy were used for development. External validation was performed in 7 cohorts from Sweden, Norway, Germany, Austria, and the Netherlands. Age, sex, prior surgery, tumor histology and maximum diameter, expected major brain vessel or cranial nerve manipulation, resection in eloquent areas and the posterior fossa, and surgical approach were recorded. Discrimination and calibration metrics were evaluated.

RESULTS

In the development (2437 patients, 48.2% male; mean age ± SD: 55 ± 15 years) and external validation (2427 patients, 42.4% male; mean age ± SD: 58 ± 13 years) cohorts, functional impairment rates were 21.5% and 28.5%, respectively. In the development cohort, area under the curve (AUC) values of 0.72 (95% CI 0.69–0.74) were observed. In the pooled external validation cohort, the AUC was 0.72 (95% CI 0.69–0.74), confirming generalizability. Calibration plots indicated fair calibration in both cohorts. The tool has been incorporated into a web-based application available at https://neurosurgery.shinyapps.io/impairment/.

CONCLUSIONS

Functional impairment after intracranial tumor surgery remains extraordinarily difficult to predict, although machine learning can help quantify risk. This externally validated prediction tool can serve as the basis for case-by-case discussions and risk-to-benefit estimation of surgical treatment in the individual patient.