Search Results

You are looking at 1 - 8 of 8 items for

  • Author or Editor: Ming Yao x
  • All content x
Clear All Modify Search
Restricted access

Ji-Yao Jiang, Ming-Kun Yu, and Cheng Zhu

Object. The goal of this study was to investigate the protective effects of long-term (3–14 days) mild hypothermia therapy (33–35°C) on outcome in 87 patients with severe traumatic brain injury (TBI) (Glasgow Coma Scale score ≤ 8).

Methods. In 43 patients assigned to a mild hypothermia group, body temperatures were cooled to 33 to 35°C a mean of 15 hours after injury and kept at 33 to 35°C for 3 to 14 days. Rewarming commenced when the individual patient's intracranial pressure (ICP) returned to the normal level. Body temperatures in 44 patients assigned to a normothermia group were maintained at 37 to 38°C. Each patient's outcome was evaluated 1 year later by using the Glasgow Outcome Scale. One year after TBI, the mortality rate was 25.58% (11 of 43 patients) and the rate of favorable outcome (good recovery or moderate disability) was 46.51% (20 of 43 patients) in the mild hypothermia group. In the normothermia group, the mortality rate was 45.45% (20 of 44 patients) and the rate of favorable outcome was 27.27% (12 of 44 patients) (p < 0.05). Induced mild hypothermia also markedly reduced ICP (p < 0.01) and inhibited hyperglycemia (p < 0.05). The rates of complication were not significantly different between the two groups.

Conclusions. The data produced by this study demonstrate that long-term mild hypothermia therapy significantly improves outcomes in patients with severe TBI.

Restricted access

Cheng-Hong Toh, Yao-Liang Chen, Tsung-Che Hsieh, Shih-Ming Jung, Ho-Fai Wong, and Shu-Hang Ng

✓ The authors report on the first case of corpus callosum glioblastoma multiforme (GBM) with diffusion-weighted (DW) magnetic resonance (MR) imaging findings that mimicked those for lymphoma but with MR spectroscopy results absent of lymphoma characteristics. This 68-year-old man presented with rapid, progressive impairment in short-term memory as well as slow responses and a change in his personality within 3 weeks of admission. Results of cranial computed tomography revealed a slightly hyperdense corpus callosum tumor with bihemispheric involvement. Magnetic resonance images showed a homogeneous mass with strong enhancement. The mass showed water restriction on DW MR images and apparent diffusion coefficient (ADC) maps but no markedly elevated lipid resonance on MR spectroscopy. The patient underwent tumor resection. Results of pathological studies with immunohistochemical analysis confirmed that the lesion was GBM.

Diffusion-weighted MR imaging together with ADC mapping and MR spectroscopy was reported to be useful in differentiating GBM and primary brain lymphoma. The lymphomas were hyperintense to gray matter on DW MR images and isointense to hypointense on ADC maps because of water restriction. In contrast, the GBMs were hyperintense to gray matter on both DW MR images and ADC maps because of the T2 shine-through effect. On MR spectroscopy, lipid resonance was markedly elevated in lymphoma but only slightly elevated in GBM.

Restricted access

Peng Xu, Wei-Ming Gong, Yao Li, Tao Zhang, Kai Zhang, De-Zhen Yin, and Tang-Hong Jia

Object

Chronic mechanical compression of the spinal cord, which is commonly caused by degeneration of the spine, impairs motor and sensory functions insidiously and progressively. Yet the exact mechanisms of chronic spinal cord compression (SCC) remain to be elucidated. To study the pathophysiology of this condition, the authors developed a simple animal experimental model that reproduced the clinical course of mechanical compression of the spinal cord.

Methods

A custom-designed compression device was implanted on the exposed spinal cord of female Wistar rats between the T-7 and T-9 vertebrae. A root canal screw attached to a plastic plate was tightened 1 complete turn (1 pitch) every 7 days for 6 weeks. The placement of the compression device and the degree of compression were validated every week using radiography. Furthermore, a motor sensory deficit index was also calculated every week. After 3, 6, 9, or 12 weeks, the compressed T7–9 spinal cords were harvested and examined histologically.

Results

Lateral projection of the thoracic spine showed a progressively increasing rate of mean spinal cord narrowing in the compression group. Motor and sensory deficiencies were observed from Week 3 onward; paralysis was observed in 2 rats at Week 12. Motor deficiency appeared earlier than sensory deficiency. Obvious pathological changes were observed starting at Week 6. The number of neurons in the gray matter of rats with chronic compression of the spinal cord decreased progressively in the 6- and 9-week compression groups. In the white matter, myelin destruction and loss of axons and glia were noted. The number of terminal deoxynucleotidyl transferase–mediated deoxyuridine triphosphate nick-end labeling (TUNEL)–positive neurons increased in the ventral-to-dorsal direction. The number of TUNEL-positive cells increased from Week 6 onward and peaked at Week 9.

Conclusions

This practical model accurately reproduces characteristic features of clinical chronic SCC, including progressive motor and sensory disturbances after a latency and insidious neuronal loss.

Full access

Ya-Bin Ji, Yong-Ming Wu, Zhong Ji, Wei Song, Sui-Yi Xu, Yao Wang, and Su-Yue Pan

Object

Intracarotid artery cold saline infusion (ICSI) is an effective method for protecting brain tissue, but its use is limited because of undesirable secondary effects, such as severe decreases in hematocrit levels, as well as its relatively brief duration. In this study, the authors describe and investigate the effects of a novel ICSI pattern (interrupted ICSI) relative to the traditional method (uninterrupted ICSI).

Methods

Ischemic strokes were induced in 85 male Sprague-Dawley rats by occluding the middle cerebral artery for 3 hours using an intraluminal filament. Uninterrupted infusion groups received an infusion at 15 ml/hour for 30 minutes continuously. The same infusion speed was used in the interrupted infusion groups, but the whole duration was divided into trisections, and there was a 20-minute interval without infusion between sections. Forty-eight hours after reperfusion, H & E and silver nitrate staining were utilized for morphological assessment. Infarct sizes and brain water contents were determined using H & E staining and the dry-wet weight method, respectively. Levels of neuron-specific enolase (NSE), S100β protein, and matrix metalloproteinase 9 (MMP-9) in the serum were determined using enzyme-linked immunosorbent assay. Neurological deficits were also evaluated.

Results

Histology showed that interrupted ICSI did not affect neurons or fibers in rat brains, which suggests that this method is safe for brain tissues with ischemia. The duration of hypothermia induced by interrupted ICSI was longer than that induced via the traditional method, and the decrease in hematocrit levels was less pronounced. There were no differences in infarct size or brain water content between uninterrupted and interrupted ICSI groups, but neuron-specific enolase and matrix metalloproteinase 9 serum levels were more reduced after interrupted ICSI than after the traditional method.

Conclusions

Interrupted ICSI is a safe method. Compared with traditional ICSI, the interrupted method has a longer duration of hypothermia and less effect on hematocrit and offers more potentially improved neuroprotection, thereby making it more attractive as an infusion technique in the clinic.

Restricted access

Bing Huang, Ming Yao, QiLiang Chen, Huidan Lin, Xindan Du, Hao Huang, Xian Zhao, Huy Do, and Xiang Qian

OBJECTIVE

Hemifacial spasm (HFS) is a debilitating neuromuscular disorder with limited treatment options. The current study describes a novel minimally invasive procedure that provided effective and sustained relief for patients with HFS. The authors provide a detailed description of the awake CT-guided percutaneous radiofrequency ablation (RFA) of the facial nerve for treatment of HFS, and they examine its clinical efficacy. This is the first time in the literature that this procedure has been applied and systematically analyzed for HFS.

METHODS

Patients with a history of HFS were recruited between August 2018 and April 2020. Those with a history of cerebellopontine lesions, coagulopathy, ongoing pregnancy, cardiac pacemaker or defibrillator implants, or who declined the procedure were excluded from the study. Fifty-three patients who met the study criteria were included and underwent awake CT-guided RFA. Under minimal sedation, a radiofrequency (RF) needle was used to reach the stylomastoid foramen on the affected side under CT guidance, and the facial nerve was localized using a low-frequency stimulation current. Patients were instructed to engage facial muscles as a proxy for motor monitoring during RFA. Ablation stopped when the patients’ hemifacial contracture resolved. Patients were kept for inpatient monitoring for 24 hours postoperatively and were followed up monthly to monitor resolution of HFS and complications for up to 19 months.

RESULTS

The average duration of the procedure was 32–34 minutes. Postoperatively, 91% of the patients (48/53) had complete resolution of HFS, whereas the remaining individuals had partial resolution. A total of 48 patients reported mild to moderate facial paralysis immediately post-RFA, but most resolved within 1 month. No other significant complication was observed during the study period. By the end of the study period, 5 patients had recurrence of mild HFS symptoms, whereas only 2 patients reported dissatisfaction with the treatment results.

CONCLUSIONS

The authors report for the first time that awake CT-guided RFA of the facial nerve at the stylomastoid foramen is a minimally invasive procedure and can be an effective treatment option for HFS.

Free access

Keyi Zhang, Ming Shen, Nidan Qiao, Zhengyuan Chen, Wenqiang He, Zengyi Ma, Xuefei Shou, Shiqi Li, Yao Zhao, Li Pan, Dan Liu, Min He, Zhaoyun Zhang, Yiming Li, Zhenwei Yao, Hongying Ye, and Yongfei Wang

OBJECTIVE

The primary aim of this study was to investigate the value of multidisciplinary team (MDT) management in treating patients with Cushing’s disease (CD). The secondary aim was to assess the concordance of bilateral inferior petrosal sinus sampling (BIPSS) lateralization with intraoperative observations.

METHODS

The authors recruited 124 consecutive patients (128 procedures) who had undergone endoscopic endonasal resection of adrenocorticotropic hormone–secreting pituitary adenomas from May 2014 to April 2018 and assessed their clinical characteristics, surgical outcomes, and adjuvant therapies. The criteria for surgical remission were normalized serum and urinary cortisol levels, which could be suppressed by a low-dose dexamethasone suppression test at 3-months’ follow-up without adjuvant treatment.

RESULTS

The remission rates of the 113 patients with long-term follow-up (20.3 ± 12.2 months) were 83.2% after surgery alone and 91.2% after adjuvant therapy. The surgical remission rates of macroadenomas, MRI-visible microadenomas, and MRI-negative tumors were 66.7% (12/18), 89.3% (67/75), and 75% (15/20), respectively (p = 0.039). The surgical remission rates had a trend of improvement during the study period (87.5% in 2017–2018 vs 76.5% in 2014, p = 0.517). Multivariate regression analysis showed that a history of previous pituitary surgery (OR 0.300, 95% CI 0.100–0.903; p = 0.032) and MRI-visible microadenoma (OR 3.048, 95% CI 1.030–9.019; p = 0.044) were independent factors influencing surgical remission. The recurrence rate was 3.2% after a mean of 18 months after surgery. The remission rate of postoperative MDT management in patients with persistent disease was higher than non-MDT management (66.7% vs 0%, p = 0.033). In cases with preoperative BIPSS lateralization, 84.6% (44/52) were concordant with intraoperative findings.

CONCLUSIONS

MRI-visible microadenoma and primary surgery were independent predictors of surgical remission in CD. The MDT management strategy helps to achieve a better overall outcome. BIPSS may help to lateralize the tumor in MRI-negative/equivocal microadenomas.

Restricted access

Shang-Hang Shen, Aij-Lie Kwan, Bo-Liang Wang, Jian-Feng Guo, Guo-Wei Tan, Si-Fang Chen, Xi-Yao Liu, Feng Liu, Ming Cai, and Zhan-Xiang Wang

Object

The occurrence of hydrocephalic macrocephaly is uncommon. When the condition does occur, it is usually seen in infants and young children. Patients with this disorder have an excessively enlarged head and weak physical conditions. Various surgical techniques of reduction cranioplasty for the treatment of these patients have been reported. In this study, a revised surgical procedure with the aid of simulated computer imaging for the treatment of hydrocephalic macrocephaly is presented.

Methods

Five cases of hydrocephalic macrocephaly in children ranging in age from 16 to 97 months were reviewed. These patients underwent surgical treatment at The First Affiliated Hospital of Xiamen University over a period of 4 years from January 2007 to January 2011. After physical examination, a 3D computer imaging system to simulate the patient's postoperative head appearance and bone reconstruction was established. Afterward, for each case an appropriate surgical plan was designed to select the best remodeling method and cranial shape. Then, prior to performing reduction remodeling surgery in the patient according to the computer-simulated procedures, the surgeon practiced the bone reconstruction technique on a plaster head model made in proportion to the patient's head. In addition, a sagittal bandeau was used to achieve stability and bilateral symmetry of the remodeled cranial vault. Each patient underwent follow-up for 6–32 months.

Results

Medium-pressure ventriculoperitoneal shunt surgery or shunt revision procedures were performed in each patient for treating hydrocephalus, and all patients underwent total cranial vault remodeling to reduce the cranial cavity space. Three of the 5 patients underwent a single-stage surgery, while the other 2 patients underwent total cranial vault remodeling in the first stage and the ventriculoperitoneal shunt operation 2 weeks later because of unrecovered hydrocephalus. All patients had good outcome with regard to hydrocephalus and macrocephaly.

Conclusions

There are still no standard surgical strategies for the treatment of hydrocephalic macrocephaly. Based on their experience, the authors suggest using a computer imaging system to simulate a patient's postoperative head appearance and bone reconstruction together with total cranial vault remodeling with shunt surgery in a single-stage or 2-stage procedure for the successful treatment of hydrocephalic macrocephaly.

Restricted access

Lei Xia, Hongwei Zhang, Chunjiang Yu, Mingshan Zhang, Ming Ren, Yanming Qu, Haoran Wang, Mingwang Zhu, Dianjiang Zhao, Xueling Qi, and Kun Yao

Object

The aim of this study was to evaluate the clinical results and surgical outcomes of cystic vestibular schwannomas (VSs) with fluid-fluid levels.

Methods

Forty-five patients with cystic VSs and 86 with solid VSs were enrolled in the study. The patients in the cystic VSs were further divided into those with and without fluid-fluid levels. The clinical and neuroimaging features, intraoperative findings, and surgical outcomes of the 3 groups were retrospectively compared.

Results

Peritumoral adhesion was significantly greater in the fluid-level group (70.8%) than in the nonfluid-level group (28.6%) and the solid group (25.6%; p < 0.0001). Complete removal of the VS occurred significantly less in the fluid-level group (45.8%, 11/24) than in the nonfluid-level group (76.2%, 16/21) and the solid group (75.6%, 65/86; p = 0.015). Postoperative facial nerve function in the fluid-level group was less favorable than in the other 2 groups; good/satisfactory facial nerve function 1 year after surgery was noted in 50.0% cases in the fluid-level group compared with 83.3% cases in the nonfluid-level group (p = 0.038).

Conclusions

Cystic VSs with fluid-fluid levels more frequently adhered to surrounding neurovascular structures and had a less favorable surgical outcome. A possible mechanism of peritumoral adhesion is intratumoral hemorrhage and consequent inflammatory reactions that lead to destruction of the tumor-nerve barrier. These findings may be useful in predicting surgical outcome and planning surgical strategy preoperatively.