Search Results

You are looking at 1 - 8 of 8 items for

  • Author or Editor: Michael J. Strong x
  • Refine by Access: all x
Clear All Modify Search
Open access

Kevin Swong, Michael J. Strong, Jay K. Nathan, Timothy J. Yee, Brandon W. Smith, Paul Park, and Mark E. Oppenlander

BACKGROUND

Lumbar radiculopathy is the most common indication for lumbar discectomy, but residual postoperative radicular symptoms are common. Postoperative lumbar radiculopathy secondary to scar formation is notoriously difficult to manage, with the mainstay of treatment focused on nonoperative techniques. Surgical intervention for epidural fibrosis has shown unacceptably high complication rates and poor success rates.

OBSERVATIONS

Three patients underwent spinal arthrodesis without direct decompression for recurrent radiculopathy due to epidural fibrosis. Each patient previously underwent lumbar discectomy but subsequently developed recurrent radiculopathy. Imaging revealed no recurrent disc herniation, although it demonstrated extensive epidural fibrosis and scar in the region of the nerve root at the previous surgical site. Dynamic radiographs showed no instability. Two patients underwent lateral lumbar interbody fusion, and one patient underwent anterior lumbosacral interbody fusion. Each patient experienced resolution of radicular symptoms by the 1-year follow-up. Average EQ visual analog scale scores improved from 65 preoperatively to 78 postoperatively.

LESSONS

Spinal arthrodesis via lumbar interbody fusion, without direct decompression, may relieve pain in patients with recurrent radiculopathy due to epidural fibrosis, even in the absence of gross spinal instability.

Free access

Michael J. Strong, Timothy J. Yee, Siri Sahib S. Khalsa, Yamaan S. Saadeh, Kevin N. Swong, Osama N. Kashlan, Nicholas J. Szerlip, Paul Park, and Mark E. Oppenlander

OBJECTIVE

The lateral lumbar interbody fusion (LLIF) technique is used to treat many common spinal degenerative pathologies including kyphoscoliosis. The use of spinal navigation for LLIF has not been broadly adopted, especially in adult spinal deformity. The purpose of this study was to evaluate the feasibility as well as the intraoperative and navigation-related complications of computer-assisted 3D navigation (CaN) during multiple-level LLIF for spinal deformity.

METHODS

Retrospective analysis of clinical and operative characteristics was performed for all patients > 18 years of age who underwent multiple-level CaN LLIF combined with posterior instrumentation for adult spinal deformity at the University of Michigan between 2014 and 2020. Intraoperative CaN-related complications, LLIF approach–related postoperative complications, and medical postoperative complications were assessed.

RESULTS

Fifty-nine patients were identified. The mean age was 66.3 years (range 42–83 years) and body mass index was 27.6 kg/m2 (range 18–43 kg/m2). The average coronal Cobb angle was 26.8° (range 3.6°–67.0°) and sagittal vertical axis was 6.3 cm (range −2.3 to 14.7 cm). The average number of LLIF and posterior instrumentation levels were 2.97 cages (range 2–5 cages) and 5.78 levels (range 3–14 levels), respectively. A total of 6 intraoperative complications related to the LLIF stage occurred in 5 patients. Three of these were CaN-related and occurred in 2 patients (3.4%), including 1 misplaced lateral interbody cage (0.6% of 175 total lateral cages placed) requiring intraoperative revision. No patient required a return to the operating room for a misplaced interbody cage. A total of 12 intraoperative complications related to the posterior stage occurred in 11 patients, with 5 being CaN-related and occurring in 4 patients (6.8%). Univariate and multivariate analyses revealed no statistically significant risk factors for intraoperative and CaN-related complications. Transient hip weakness and numbness were found to be in 20.3% and 22.0% of patients, respectively. At the 1-month follow-up, weakness was observed in 3.4% and numbness in 11.9% of patients.

CONCLUSIONS

Use of CaN in multiple-level LLIF in the treatment of adult spinal deformity appears to be a safe and effective technique. The incidence of approach-related complications with CaN was 3.4% and cage placement accuracy was high.

Free access

Yamaan S. Saadeh, Clay M. Elswick, Eleanor Smith, Timothy J. Yee, Michael J. Strong, Kevin Swong, Brandon W. Smith, Mark E. Oppenlander, Osama N. Kashlan, and Paul Park

OBJECTIVE

Age is known to be a risk factor for increased complications due to surgery. However, elderly patients can gain significant quality-of-life benefits from surgery. Lateral lumbar interbody fusion (LLIF) is a minimally invasive procedure that is commonly used to treat degenerative spine disease. Recently, 3D navigation has been applied to LLIF. The purpose of this study was to determine whether there is an increased complication risk in the elderly with navigated LLIF.

METHODS

Patients who underwent 3D-navigated LLIF for degenerative disease from 2014 to 2019 were included in the analysis. Patients were divided into elderly and nonelderly groups, with those 65 years and older categorized as elderly. Ninety-day medical and surgical complications were recorded. Patient and surgical characteristics were compared between groups, and multivariate regression analysis was used to determine independent risk factors for complication.

RESULTS

Of the 115 patients included, 56 were elderly and 59 were nonelderly. There were 15 complications (25.4%) in the nonelderly group and 10 (17.9%) in the elderly group, which was not significantly different (p = 0.44). On multivariable analysis, age was not a risk factor for complication (p = 0.52). However, multiple-level LLIF was associated with an increased risk of approach-related complication (OR 3.58, p = 0.02).

CONCLUSIONS

Elderly patients do not appear to experience higher rates of approach-related complications compared with nonelderly patients undergoing 3D navigated LLIF. Rather, multilevel surgery is a predictor for approach-related complication.

Full access

Michael J. Strong, Trevor Rosenlof, Siddhartha Padmanabha, Roy S. Weiner, Lee Roy Morgan, and Marcus I. Ware

The authors describe the case of a patient who initially presented with uterine leiomyosarcoma (LMS) that later metastasized to the spine. The patient was treated at another institution for her primary uterine LMS, undergoing resection followed by adjuvant chemotherapy. After several years of disease remission, the patient presented in January 2011 to the authors’ institution with recurrent uterine LMS metastatic to the spine, which has been treated with multiple therapeutic modalities in a combination of surgery, radiosurgery, and chemotherapy. As a result of this approach, the patient has been progression free for 35 months since her presentation (April 2011 to March 2014). We herein describe our experience treating this patient with recurrent uterine LMS of the spine and suggest that patients with recurrent uterine LMSs should be considered for treatment using a multimodality approach with emphasis on enrollment into clinical trials.

Restricted access

Eric M. Thompson, Michael J. Strong, Garth Warren, Randy L. Woltjer, and Nathan R. Selden

Object

The pathophysiology of tethered cord syndrome (TCS) is uncertain; however, it has been suggested that fibrous and fatty elements within the filum terminale (FT) play a role. The objective of this study was to describe the radiological and histological features of the FT in TCS and determine if there are associations between those features and clinical outcomes, complications, and urodynamics.

Methods

In this retrospective study, histological, MRI, and clinical data obtained in 293 patients with TCS who underwent FT transection were reviewed and analyzed in a multivariate analysis.

Results

The median patient age was 4.9 years (range 0.3–64.3 years). On MRI, a fatty filum was present in 65% of patients and a thickened filum (> 2 mm) was seen in 45%. Histologically, the FT contained prominent fibrous tissue in 95%, nerve twigs in 79%, adipose tissue in 59%, and vascular tissue in 36%. Histological features associated with a thickened filum on MR images were adipose tissue (OR 3.5, p < 0.001), nerve twigs (OR 2.2, p = 0.028), and vascular tissue (OR 0.5, p = 0.025). Adipose tissue was associated with a conus level below the L2–3 disc space (OR 2.3, p = 0.031) and with a fatty filum on imaging (OR 9.8, p < 0.001). Nerve twigs were associated with abnormal urodynamics (OR 10.9, p = 0.049). The only variable predictive of clinical improvement was conus level; patients with conus levels caudal to L-2 were less likely to improve postoperatively (OR 0.3, p = 0.042).

Conclusions

Fibrous tissue was ubiquitous and may be important in the pathophysiology of TCS. Nerve twigs and adipose tissue were associated with abnormal urodynamics and low-lying coni, respectively. Although the majority of patients clinically improved, patients with normal conus levels had significantly better outcomes.

Restricted access

Timothy J. Yee, Yamaan S. Saadeh, Michael J. Strong, Ayobami L. Ward, Clay M. Elswick, Sudharsan Srinivasan, Paul Park, Mark E. Oppenlander, Daniel E. Spratt, William C. Jackson, and Nicholas J. Szerlip

OBJECTIVE

Decompression with instrumented fusion is commonly employed for spinal metastatic disease. Arthrodesis is typically sought despite limited knowledge of fusion outcomes, high procedural morbidity, and poor prognosis. This study aimed to describe survival, fusion, and hardware failure after decompression and fusion for spinal metastatic disease.

METHODS

The authors retrospectively examined a prospectively collected, single-institution database of adult patients undergoing decompression and instrumented fusion for spinal metastases. Patients were followed clinically until death or loss to follow-up. Fusion was assessed using CT when performed for oncological surveillance at 6-month intervals through 24 months postoperatively. Estimated cumulative incidences for fusion and hardware failure accounted for the competing risk of death. Potential risk factors were analyzed with univariate Fine and Gray proportional subdistribution hazard models.

RESULTS

One hundred sixty-four patients were identified. The mean age ± SD was 62.2 ± 10.8 years, 61.6% of patients were male, 98.8% received allograft and/or autograft, and 89.6% received postoperative radiotherapy. The Kaplan-Meier estimate of median survival was 11.0 months (IQR 3.5–37.8 months). The estimated cumulative incidences of any fusion and of complete fusion were 28.8% (95% CI 21.3%–36.7%) and 8.2% (95% CI 4.1%–13.9%). Of patients surviving 6 and 12 months, complete fusion was observed in 12.5% and 16.1%, respectively. The estimated cumulative incidence of hardware failure was 4.2% (95% CI 1.5–9.3%). Increasing age predicted hardware failure (HR 1.2, p = 0.003).

CONCLUSIONS

Low rates of complete fusion and hardware failure were observed due to the high competing risk of death. Further prospective, case-control studies incorporating nonfusion instrumentation techniques may be warranted.

Restricted access

Michael J. Strong, Julianne Santarosa, Timothy P. Sullivan, Noojan Kazemi, Jacob R. Joseph, Osama N. Kashlan, Mark E. Oppenlander, Nicholas J. Szerlip, Paul Park, and Clay M. Elswick

OBJECTIVE

In the era of modern medicine with an armamentarium full of state-of-the art technologies at our disposal, the incidence of wrong-level spinal surgery remains problematic. In particular, the thoracic spine presents a challenge for accurate localization due partly to body habitus, anatomical variations, and radiographic artifact from the ribs and scapula. The present review aims to assess and describe thoracic spine localization techniques.

METHODS

The authors performed a literature search using the PubMed database from 1990 to 2020, compliant with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). A total of 27 articles were included in this qualitative review.

RESULTS

A number of pre- and intraoperative strategies have been devised and employed to facilitate correct-level localization. Some of the more well-described approaches include fiducial metallic markers (screw or gold), metallic coils, polymethylmethacrylate, methylene blue, marking wire, use of intraoperative neuronavigation, intraoperative localization techniques (including using a needle, temperature probe, fluoroscopy, MRI, and ultrasonography), and skin marking.

CONCLUSIONS

While a number of techniques exist to accurately localize lesions in the thoracic spine, each has its advantages and disadvantages. Ultimately, the localization technique deployed by the spine surgeon will be patient-specific but often based on surgeon preference.