Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Mekibib Altaye x
  • All content x
Clear All Modify Search
Restricted access

Ellen L. Air, Weihong Yuan, Scott K. Holland, Blaise V. Jones, Karin Bierbrauer, Mekibib Altaye, and Francesco T. Mangano


The goal in this study was to compare the integrity of white matter before and after ventriculoperitoneal (VP) shunt insertion by evaluating the anisotropic diffusion properties with the aid of diffusion tensor (DT) imaging in young children with hydrocephalus.


The authors retrospectively identified 10 children with hydrocephalus who underwent both pre- and postoperative DT imaging studies. The DT imaging parameters (fractional anisotropy [FA], mean diffusivity, axial diffusivity, and radial diffusivity) were computed and compared longitudinally in the splenium and genu of the corpus callosum (gCC) and in the anterior and posterior limbs of the internal capsule (PLIC). The patients' values on DT imaging at the pre- and postshunt stages were compared with the corresponding age-matched controls as well as with a large cohort of healthy children in the database.


In the gCC, 7 of 10 children had abnormally low preoperative FA values, 6 of which normalized postoperatively. All 3 of the 10 children who had normal preoperative FA values had normal FA values postoperatively as well. In the PLIC, 7 of 10 children had abnormally high FA values, 6 of which normalized postoperatively, whereas the other one had abnormally low postoperative FA. Of the remaining 3 children, 2 had abnormally low preoperative FA values in the PLIC; this normalized in 1 patient after surgery. The other child had a normal preoperative FA value that became abnormally low postoperatively. When comparing the presurgery frequency of abnormally low, normal, and abnormally high FA values to those postsurgery, there was a statistically significant longitudinal difference in both gCC (p = 0.02) and PLIC (p = 0.002).


In this first longitudinal DT imaging study of young children with hydrocephalus, DT imaging anisotropy yielded abnormal results in several white matter regions of the brain, and trended toward normalization following VP shunt placement.

Restricted access

Weihong Yuan, Charles B. Stevenson, Mekibib Altaye, Blaise V. Jones, James Leach, Mykhailo Lovha, Noa Rennert, and Francesco T. Mangano


The aim of this study was to investigate diffusion tensor imaging (DTI), an objective and noninvasive neuroimaging technique, for its potential as an imaging biomarker to predict the need and timing of CSF diversion surgery in patients after prenatal myelomeningocele (MMC) repair.


This was a retrospective analysis of data based on 35 pediatric patients after prenatal MMC repair (gestational age at birth 32.68 ± 3.42 weeks, range 24–38 weeks; 15 females and 20 males). A logistic regression analysis was used to classify patients to determine the need for CSF diversion surgery. The model performance was compared between using the frontooccipital horn ratio (FOHR) alone and using the FOHR combined with DTI values (the genu of the corpus callosum [gCC] and the posterior limb of the internal capsule [PLIC]). For patients who needed to be treated surgically, timing of the procedure was used as the clinical outcome to test the predictive value of DTI acquired prior to surgery based on a linear regression analysis.


Significantly lower fractional anisotropy (FA) values in the gCC (p = 0.014) and PLIC (p = 0.037) and higher mean diffusivity (MD) values in the gCC (p = 0.013) were found in patients who required CSF diversion surgery compared with those who did not require surgery (all p values adjusted for age). Based on the logistic regression analysis, the FOHR alone showed an accuracy of performance of 0.69 and area under the receiver operating characteristic curve (AUC) of 0.60. The performance of the model was higher when DTI measures were used in the logistic regression model (accuracy = 0.77, AUC = 0.84 for using DTI values in gCC; accuracy = 0.75, AUC = 0.84 for using DTI values in PLIC). Combining the DTI values of the gCC or PLIC and FOHR did not improve the model performance when compared with using the DTI values alone. In patients who needed CSF diversion surgery, significant correlation was found between DTI values in the gCC and the time interval between imaging and surgery (FA: ρ = 0.625, p = 0.022; MD: ρ = −0.6830, p = 0.010; both adjusted for age and FOHR).


The authors’ data demonstrated that DTI could potentially serve as an objective biomarker differentiating patients after prenatal MMC repair regarding those who may require surgery for MMC-associated hydrocephalus. The predictive value for the need and timing of CSF diversion surgery is highly clinically relevant for improving and optimizing decision-making for the treatment of hydrocephalus in this patient population.

Full access

Francesco T. Mangano, Mekibib Altaye, Robert C. McKinstry, Joshua S. Shimony, Stephanie K. Powell, Jannel M. Phillips, Holly Barnard, David D. Limbrick Jr., Scott K. Holland, Blaise V. Jones, Jonathan Dodd, Sarah Simpson, Deanna Mercer, Akila Rajagopal, Sarah Bidwell, and Weihong Yuan


The purpose of this study was to investigate white matter (WM) structural abnormalities using diffusion tensor imaging (DTI) in children with hydrocephalus before CSF diversionary surgery (including ventriculoperitoneal shunt insertion and endoscopic third ventriculostomy) and during the course of recovery after surgery in association with neuropsychological and behavioral outcome.


This prospective study included 54 pediatric patients with congenital hydrocephalus (21 female, 33 male; age range 0.03–194.5 months) who underwent surgery and 64 normal controls (30 female, 34 male; age range 0.30–197.75 months). DTI and neurodevelopmental outcome data were collected once in the control group and 3 times (preoperatively and at 3 and 12 months postoperatively) in the patients with hydrocephalus. DTI measures, including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) values were extracted from the genu of the corpus callosum (gCC) and the posterior limb of internal capsule (PLIC). Group analysis was performed first cross-sectionally to quantify DTI abnormalities at 3 time points by comparing the data obtained in the hydrocephalus group for each of the 3 time points to data obtained in the controls. Longitudinal comparisons were conducted pairwise between different time points in patients whose data were acquired at multiple time points. Neurodevelopmental data were collected and analyzed using the Adaptive Behavior Assessment System, Second Edition, and the Bayley Scales of Infant Development, Third Edition. Correlation analyses were performed between DTI and behavioral measures.


Significant DTI abnormalities were found in the hydrocephalus patients in both the gCC (lower FA and higher MD, AD, and RD) and the PLIC (higher FA, lower AD and RD) before surgery. The DTI measures in the gCC remained mostly abnormal at 3 and 12 months after surgery. The DTI abnormalities in the PLIC were significant in FA and AD at 3 months after surgery but did not persist when tested at 12 months after surgery. Significant longitudinal DTI changes in the patients with hydrocephalus were found in the gCC when findings at 3 and 12 months after surgery were compared. In the PLIC, trend-level longitudinal changes were observed between preoperative findings and 3-month postoperative findings, as well as between 3- and 12-month postoperative findings. Significant correlation between DTI and developmental outcome was found at all 3 time points. Notably, a significant correlation was found between DTI in the PLIC at 3 months after surgery and developmental outcome at 12 months after surgery.


The data showed significant WM abnormality based on DTI in both the gCC and the PLIC in patients with congenital hydrocephalus before surgery, and the abnormalities persisted in both the gCC and the PLIC at 3 months after surgery. The DTI values remained significantly abnormal in the gCC at 12 months after surgery. Longitudinal analysis showed signs of recovery in both WM structures between different time points. Combined with the significant correlation found between DTI and neuropsychological measures, the findings of this study suggest that DTI can serve as a sensitive imaging biomarker for underlying neuroanatomical changes and postsurgical developmental outcome and even as a predictor for future outcomes.