Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Mehmet Emir Yalvac x
Clear All Modify Search
Restricted access

Omer Faruk Bayrak, Esra Aydemir, Sukru Gulluoglu, Fikrettin Sahin, Serhat Sevli, Mehmet Emir Yalvac, Hasan Acar and Mustafa Ozen

Object

Chordoma is a rare type of malignant bone tumor and is known to arise from the remnants of the notochord. Resistance to chemotherapy makes the treatment of chordoma difficult; therefore, new approaches need to be developed to cure this disease. Differentiation therapy, using various differentiating agents, is attracting oncologists as a common therapeutic method to treat other tumors. Based on forcing cells to mature into other lineages, differentiation therapy might be an available method to treat chordomas in addition to conventional therapies.

Methods

In this study a chordoma cell line, U-CH1, was exposed to several chemotherapeutic agents including vincristine, doxorubicin, cisplatin, etoposide, fludarabine, methotrexate, nilotinib, and imatinib mesylate under appropriate conditions. The first group of U-CH1 cells was exposed to drugs only and the second group of cells was exposed to the simultaneous treatment of 1 μM all-trans retinoic acid (ATRA) and chemotherapeutic agents in differentiation therapy. The efficacy of the differentiation method was assessed by measuring the viability of U-CH1 cells.

Results

Vincristine, doxorubicin, etoposide, cisplatin, and fludarabine, each at a concentration of 10 μM, decreased the number of chordoma cells when given alone down to 11%, 0%, 30%, 67%, and 3%, respectively. Etoposide and cisplatin, each at a concentration of 10 μM, reduced the percentage of viable chordoma cells in a more effective way when given with 1 μM ATRA simultaneously, reducing the number of viable cells to 14% and 9%, respectively. On the other hand, imatinib and nilotinib, each at a concentration of 3 μM, as well as 10 μM methotrexate, showed no decrease in the number of cancer cells.

Conclusions

The results suggest that chordoma cells may be treated using the differentiation method in a more effective way than when they are treated with chemotherapeutic agents alone. This new approach may be an alternative method to conventional therapies in the treatment of chordoma.

Restricted access

Esra Aydemir, Omer Faruk Bayrak, Fikrettin Sahin, Basar Atalay, Gamze Torun Kose, Mustafa Ozen, Serhat Sevli, Altay Burak Dalan, Mehmet Emir Yalvac, Turgut Dogruluk and Uğur Türe

Object

Chordomas are locally aggressive bone tumors known to arise from the remnants of the notochord. Because chordomas are rare, molecular studies aimed at developing new therapies are scarce and new approaches are needed. Chordoma cells and cancer stem-like cells share similar characteristics, including self-renewal, differentiation, and resistance to chemotherapy. Therefore, it seems possible that chordomas might contain a subpopulation of cancer stem-like cells. The aim of this study is to determine whether cancer stem-like cells might be present in chordomas.

Methods

In this study, the authors used gene expression analysis for common cancer stem-like cellmarkers, including c-myc, SSEA-1, oct4, klf4, sox2, nanog, and brachyury, and compared chordoma cells and tissues with nucleus pulposus tissues (disc degenerated nontumorigenic tissues). Differentiation through agents such as all-trans retinoic acid and osteogenic differentiation medium was induced to the chordoma cells. Additionally, U-CH1 cells were sorted via magnetic cell sorting for stem cell markers CD133 and CD15. After separation, positive and negative cells for these markers were grown in a nonadherent environment, soft agar, to determine whether the presence of these cancer stem-like cells might be responsible for initiating chordoma. The results were compared with those of untreated cells in terms of migration, proliferation, and gene expression by using reverse transcriptase polymerase chain reaction.

Results

The results indicate that chordoma cells might be differentiating and committing into an osteogenic lineage when induced with the osteogenic differentiation agent. Chordoma cells that are induced with retinoic acid showed slower migration and proliferation rates when compared with the untreated cells. Chordoma cells that were found to be enriched by cancer stem-like cell markers, namely CD133 and CD15, were able to live in a nonadherent soft agar medium, demonstrating a self-renewal capability. To the authors' knowledge, this is the first time that cancer stem-like cell markers were also found to be expressed in chordoma cells and tissues.

Conclusions

Cancer stem-like cell detection might be an important step in determining the recurrent and metastatic characteristics of chordoma. This finding may lead to the development of new approaches toward treatments of chordomas.