Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Matthew Dashnaw x
Clear All Modify Search
Free access

Matthew L. Dashnaw, Anthony L. Petraglia and Julian E. Bailes

There has been a growing interest in the diagnosis and management of mild traumatic brain injury (TBI), or concussion. Repetitive concussion and subconcussion have been linked to a spectrum of neurological sequelae, including postconcussion syndrome, chronic traumatic encephalopathy, mild cognitive impairment, and dementia pugilistica. A more common risk than chronic traumatic encephalopathy is the season-ending or career-ending effects of concussion or its mismanagement. To effectively prevent and treat the sequelae of concussion, it will be important to understand the basic processes involved. Reviewed in this paper are the forces behind the primary phase of injury in mild TBI, as well as the immediate and delayed cellular events responsible for the secondary phase of injury leading to neuronal dysfunction and possible cell death. Advanced neuroimaging sequences have recently been developed that have the potential to increase the sensitivity of standard MRI to detect both structural and functional abnormalities associated with concussion, and have provided further insight into the potential underlying pathophysiology. Also discussed are the potential long-term effects of repetitive mild TBI, particularly chronic traumatic encephalopathy. Much of the data regarding this syndrome is limited to postmortem analyses, and at present there is no animal model of chronic traumatic encephalopathy described in the literature. As this arena of TBI research continues to evolve, it will be imperative to appropriately model concussive and even subconcussive injuries in an attempt to understand, prevent, and treat the associated chronic neurodegenerative sequelae.