Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Masahiko Takahata x
  • Refine by Access: all x
Clear All Modify Search
Restricted access

Yoshihisa Kotani, Kuniyoshi Abumi, Yasuo Shikinami, Masahiko Takahata, Ken Kadoya, Tsuyoshi Kadosawa, Akio Minami, and Kiyoshi Kaneda

Object. This 2-year experimental study was conducted to investigate the efficacy of a bioactive three-dimensional (3D) fabric disc for lumbar intervertebral disc replacement. The authors used a bioresorbable spinal fixation rod consisting of a forged composite of particulate unsintered hydroxyapatite/poly-l-lactide acid (HA/PLLA) for stability augmentation. The biomechanical and histological alterations as well as possible device-related loosening were examined at 2 years postoperatively.

Methods. Two lumbar intervertebral discs (L2–3 and L4–5) were replaced with the 3D fabric discs, which were augmented by two titanium screws and a spanning bioresorbable rod (HA/PLLA). The segmental biomechanics and interface bone ingrowth were investigated at 6, 15, and 24 months postoperatively, and results were compared with the other two surgical groups (3D fabric disc alone; 3D fabric disc with additional anterior instrumentation stabilization). The 3D fabric disc and HA/PLLA—spinal segments demonstrated segmental mobility at 15 and 24 months; however, the range of motion (ROM) in flexion—extension decreased to 49 and 40%, respectively, despite statistically equivalent preserved torsional ROM. Histologically there was excellent osseous fusion at the 3D fabric disc surface—vertebral body interface. At 2 years posttreatment, no adverse tissue reaction nor aseptic loosening of the device was observed.

Conclusions. Intervertebral disc replacement with the 3D fabric disc was viable and when used in conjunction with the bioresorbable HA/PLLA spinal augmentation. Further refinements of device design to create a stand-alone type are necessary to obviate the need for additional spinal stabilization.

Free access

Takamasa Watanabe, Masahiro Kanayama, Masahiko Takahata, Itaru Oda, Kota Suda, Yuichiro Abe, Junichiro Okumura, Yoshihiro Hojo, and Norimasa Iwasaki


The number of spine surgeries performed in elderly patients is consistently increasing. However, to date the prevalence of and risk factors for perioperative complications remain unclear, especially in patients 80 years of age or older. This study had two goals: 1) determine the perioperative complications of spine surgery associated with patients 80 years of age or older; and 2) investigate the risk factors for perioperative systemic complications.


In this paper, the authors describe a multicenter prospective cohort study. Seven spine centers with board-certified spine surgeons participated in this all-case investigation. A total of 270 consecutively enrolled patients (109 males and 161 females), 80 years of age or older, underwent spine surgery between January and December 2017. Patients with trauma, infection, or tumor were excluded in this cohort. Perioperative complications were defined as adverse events that occurred intraoperatively or within 30 days postoperatively. The patients’ preoperative health status was determined using the following means of assessment: 1) the Charlson Comorbidity Index, 2) the American Society of Anesthesiologists Physical Status Classification System, 3) the Eastern Cooperative Oncology Group Performance Status (ECOG-PS), 4) the presence of sarcopenia, and 5) the Geriatric Nutritional Risk Index. Associations among patient age, preoperative health status, surgical factors (instrumentation surgery, operation time, number of spinal levels treated, and estimated blood loss), and perioperative systemic complications were analyzed.


Overall perioperative, surgical site, and minor systemic complications were observed in 20.0%, 8.1%, and 14.8% of patients, respectively. Major systemic complications, on the other hand, were not observed. The reoperation rate was low—only 4.1%. Multivariate analysis revealed that the ECOG-PS (p = 0.013), instrumentation surgery (p = 0.024), and an operation time longer than 180 minutes (p = 0.016) were associated with minor systemic complications.


To the best of the authors’ knowledge, this is the first multicenter prospective all-case investigation of perioperative complications of spine surgery in elderly patients. Although decreased daily activity (ECOG-PS), instrumentation surgery, and longer operation time were associated with minor systemic complications, no major systemic complications were observed in these elderly patients. Thus, spine surgery can be safely performed in elderly patients 80 years of age or older.

Restricted access

Manabu Ito, Kuniyoshi Abumi, Yoshihisa Kotani, Masahiko Takahata, Hideki Sudo, Yoshihiro Hojo, and Akio Minami

The authors present a new posterior correction technique consisting of simultaneous double-rod rotation using 2 contoured rods and polyaxial pedicle screws with or without Nesplon tapes. The purpose of this study is to introduce the basic principles and surgical procedures of this new posterior surgery for correction of adolescent idiopathic scoliosis. Through gradual rotation of the concave-side rod by 2 rod holders, the convex-side rod simultaneously rotates with the the concave-side rod. This procedure does not involve any force pushing down the spinal column around the apex. Since this procedure consists of upward pushing and lateral translation of the spinal column with simultaneous double-rod rotation maneuvers, it is simple and can obtain thoracic kyphosis as well as favorable scoliosis correction. This technique is applicable not only to a thoracic single curve but also to double major curves in cases of adolescent idiopathic scoliosis.

Restricted access

Morio Matsumoto, Yoshiaki Toyama, Hirotaka Chikuda, Katsushi Takeshita, Tsuyoshi Kato, Shigeo Shindo, Kuniyoshi Abumi, Masahiko Takahata, Yutaka Nohara, Hiroshi Taneichi, Katsuro Tomita, Norio Kawahara, Shiro Imagama, Yukihiro Matsuyama, Masashi Yamazaki, and Akihiko Okawa


The aim of this study was to evaluate the outcomes of fusion surgery in patients with ossification of the posterior longitudinal ligament in the thoracic spine (T-OPLL) and to identify factors significantly related to surgical outcomes.


The study included 76 patients (34 men and 42 women with a mean age of 56.3 years) who underwent fusion surgery for T-OPLL at 7 spine centers during the 5-year period from 2003 to 2007. The authors evaluated the patient demographic data, underlying disease, preoperative comorbidities, history of spinal surgery, radiological findings, surgical methods, surgical outcomes, and complications. Surgical outcomes were assessed using the Japanese Orthopaedic Association (JOA) scale score for thoracic myelopathy (11 points) and the recovery rate.


The mean JOA scale score was 4.6 ± 2.1 points preoperatively and 7.7 ± 2.5 points at the time of the final follow-up examination, yielding a mean recovery rate of 45.4% ± 39.1%. The recovery rates by surgical method were 38.5% ± 37.8% for posterior decompression and fusion, 65.0% ± 35.6% for anterior decompression and fusion via an anterior approach, 28.8% ± 41.2% for anterior decompression via a posterior approach, and 57.5% ± 41.1% for circumferential decompression and fusion. The recovery rate was significantly higher in patients without diabetes mellitus (DM) than in those with DM. One or more complications were experienced by 31 patients (40.8%), including 20 patients with postoperative neurological deterioration, 7 with dural tears, 5 with epidural hematomas, 4 with respiratory complications, and 10 with other complications.


The outcomes of fusion surgery for T-OPLL were favorable. The absence of DM correlated with better outcomes. However, a high rate of complications was associated with the fusion surgery.

Restricted access

Takaki Inoue, Satoshi Maki, Toshitaka Yoshii, Takeo Furuya, Satoru Egawa, Kenichiro Sakai, Kazuo Kusano, Yukihiro Nakagawa, Takashi Hirai, Kanichiro Wada, Keiichi Katsumi, Kengo Fujii, Atsushi Kimura, Narihito Nagoshi, Tsukasa Kanchiku, Yukitaka Nagamoto, Yasushi Oshima, Kei Ando, Masahiko Takahata, Kanji Mori, Hideaki Nakajima, Kazuma Murata, Shunji Matsunaga, Takashi Kaito, Kei Yamada, Sho Kobayashi, Satoshi Kato, Tetsuro Ohba, Satoshi Inami, Shunsuke Fujibayashi, Hiroyuki Katoh, Haruo Kanno, Shiro Imagama, Masao Koda, Yoshiharu Kawaguchi, Katsushi Takeshita, Morio Matsumoto, Seiji Ohtori, Masashi Yamazaki, Atsushi Okawa, and


It is unclear whether anterior cervical decompression and fusion (ADF) or laminoplasty (LMP) results in better outcomes for patients with K-line–positive (+) cervical ossification of the posterior longitudinal ligament (OPLL). The purpose of the study is to compare surgical outcomes and complications of ADF versus LMP in patients with K-line (+) OPLL.


The study included 478 patients enrolled in the Japanese Multicenter Research Organization for Ossification of the Spinal Ligament and who underwent surgical treatment for cervical OPLL. The patients who underwent anterior-posterior combined surgery or posterior decompression with instrumented fusion were excluded. The patients with a follow-up period of fewer than 2 years were also excluded, leaving 198 patients with K-line (+) OPLL. Propensity score matching was performed on 198 patients with K-line (+) OPLL who underwent ADF (44 patients) or LMP (154 patients), resulting in 39 pairs of patients based on the following predictors for surgical outcomes: age, preoperative Japanese Orthopaedic Association (JOA) score, C2–7 angle, and the occupying ratio of OPLL. Clinical outcomes were assessed 1 and 2 years after surgery using the recovery rate of the JOA score. Complications and reoperation rates were also investigated.


The mean recovery rate of the JOA score 1 year after surgery was 55.3% for patients who underwent ADF and 42.3% (p = 0.06) for patients who underwent LMP. Two years after surgery, the recovery rate was 53.4% for those who underwent ADF and 38.7% for LMP (p = 0.07). Although both surgical procedures yielded good results, the mean recovery rate of JOA scores tended to be higher in the ADF group. The incidence of surgical complications, however, was higher following ADF (33%) than LMP (15%; p = 0.06). The reoperation rate was also higher in the ADF group (15%) than in the LMP group (0%; p = 0.01).


Clinical outcomes were good for both ADF and LMP, indicating that ADF and LMP are appropriate procedures for patients with K-line (+) OPLL. Clinical outcomes of ADF 1 and 2 years after surgery tended to be better than LMP, but the analysis did not detect any significant difference in clinical outcomes between the groups. Conversely, patients who underwent ADF had a higher incidence of surgery-related complications. When considering indications for ADF or LMP, benefits and risks of the surgical procedures should be carefully weighed.