Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Martin Grumet x
Clear All Modify Search
Restricted access

Koichi Hasegawa and Martin Grumet

Object. Findings in several clinical cases have suggested a correlation between tumor formation and previous injury to the central nervous system (CNS); however, the relationship between trauma and tumorigenesis has not been investigated well experimentally. In this study the authors provide evidence correlating tumorigenesis with trauma in the rat spinal cord.

Methods. A glial cell line, C6R-G/H, which expresses green fluorescent protein (GFP) and hygromycin phosphotransferase (HPT), was implanted into normal and injured rat spinal cords. In all rats in which the cells were implanted into an injured site, locomotor function deteriorated and histological analysis demonstrated glioblastoma multiforme by 6 weeks; tumorigenesis was correlated with a loss of both GFP expression and resistance to hygromycin treatment. In contrast, no evidence of tumor formation was found at 6 weeks in rats in which the cells were implanted into healthy tissue. When C6R-G/H cells were treated with contused spinal cord extract in culture before implantation, they lost GFP expression and hygromycin resistance, and later formed tumors after implantation into normal spinal cord.

Conclusions. The findings of this study indicate that trauma can induce tumorigenesis. Implantation of C6R-G/H cells into traumatized spinal cords resulted in their transformation, which was signaled by loss of GFP expression and hygromycin resistance accompanied by tumor formation. Exposure to extracts derived from injured spinal cord produced similar transformation and gene expression changes, as well as tumor formation after such cells were implanted into normal cords. Care, therefore, should be taken when cells are implanted into an injured CNS because of potential mutagenesis due to trauma-induced factors.

Restricted access

Adília Hormigo, David R. Friedlander, Perry A. Brittis, David Zagzag and Martin Grumet

Object. A variant of C6 glioma cells, C6R-G/H cells express hygromycin phosphotransferase (HPT) and appear to have reduced tumorigenicity in the embryonic brain. The goal of this study was to investigate their reduced capacity to generate tumors in the adult rat brain.

Methods. Cell lines were implanted into rat brains and tumorigenesis was evaluated. After 3 weeks, all rats with C6 cells showed signs of neurological disease, whereas rats with C6R-G/H cells did not and were either killed then or allowed to survive until later. Histological studies were performed to analyze tumor size, malignancy, angiogenesis, and cell proliferation. Cells isolated from rat brain tumors were analyzed for mutation to HPT by testing their sensitivity to hygromycin.

Conclusions. The results indicate that HPT suppresses tumor formation. Three weeks after implantation, only 44% of animals implanted with C6R-G/H cells developed tumors, whereas all animals that received C6 glioma cells developed high-grade gliomas. The C6R-G/H cells filled a 20-fold smaller maximal cross-sectional area than the C6 cells, and exhibited less malignant characteristics, including reduced angiogenesis, mitosis, and cell proliferation. Similar results were obtained in the brain of nude rats, indicating that the immune system did not play a significant role in suppressing tumor growth. The combination of green fluorescent protein (GFP) and HPT was more effective in suppressing tumorigenesis than either plasmid by itself, indicating that the GFP may protect against inactivation of the HPT. Interestingly, hygromycin resistance was lost in tumor cells that were recovered from a group of animals in which C6R-G/H cells formed tumors, confirming the correlation of HPT with reduced tumorigenicity.