Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Marta San Luciano x
  • Refine by Access: all x
Clear All Modify Search
Full access

Nicole C. Swann, Coralie de Hemptinne, Svjetlana Miocinovic, Salman Qasim, Jill L. Ostrem, Nicholas B. Galifianakis, Marta San Luciano, Sarah S. Wang, Nathan Ziman, Robin Taylor, and Philip A. Starr

OBJECTIVE

Dysfunction of distributed neural networks underlies many brain disorders. The development of neuromodulation therapies depends on a better understanding of these networks. Invasive human brain recordings have a favorable temporal and spatial resolution for the analysis of network phenomena but have generally been limited to acute intraoperative recording or short-term recording through temporarily externalized leads. Here, the authors describe their initial experience with an investigational, first-generation, totally implantable, bidirectional neural interface that allows both continuous therapeutic stimulation and recording of field potentials at multiple sites in a neural network.

METHODS

Under a physician-sponsored US Food and Drug Administration investigational device exemption, 5 patients with Parkinson's disease were implanted with the Activa PC+S system (Medtronic Inc.). The device was attached to a quadripolar lead placed in the subdural space over motor cortex, for electrocorticography potential recordings, and to a quadripolar lead in the subthalamic nucleus (STN), for both therapeutic stimulation and recording of local field potentials. Recordings from the brain of each patient were performed at multiple time points over a 1-year period.

RESULTS

There were no serious surgical complications or interruptions in deep brain stimulation therapy. Signals in both the cortex and the STN were relatively stable over time, despite a gradual increase in electrode impedance. Canonical movement-related changes in specific frequency bands in the motor cortex were identified in most but not all recordings.

CONCLUSIONS

The acquisition of chronic multisite field potentials in humans is feasible. The device performance characteristics described here may inform the design of the next generation of totally implantable neural interfaces. This research tool provides a platform for translating discoveries in brain network dynamics to improved neurostimulation paradigms.

Clinical trial registration no.: NCT01934296 (clinicaltrials.gov)

Free access

Marta San Luciano, Amy Robichaux-Viehoever, Kristen A. Dodenhoff, Melissa L. Gittings, Aaron C. Viser, Caroline A. Racine, Ian O. Bledsoe, Christa Watson Pereira, Sarah S. Wang, Philip A. Starr, and Jill L. Ostrem

OBJECTIVE

The aim of this study was to evaluate the feasibility and preliminary efficacy and safety of combined bilateral ventralis oralis posterior/ventralis intermedius (Vop/Vim) deep brain stimulation (DBS) for the treatment of acquired dystonia in children and young adults. Pallidal DBS is efficacious for severe, medication-refractory isolated dystonia, providing 50%–60% long-term improvement. Unfortunately, pallidal stimulation response rates in acquired dystonia are modest and unpredictable, with frequent nonresponders. Acquired dystonia, most commonly caused by cerebral palsy, is more common than isolated dystonia in pediatric populations and is more recalcitrant to standard treatments. Given the limitations of pallidal DBS in acquired dystonia, there is a need to explore alternative brain targets. Preliminary evidence has suggested that thalamic stimulation may be efficacious for acquired dystonia.

METHODS

Four participants, 3 with perinatal brain injuries and 1 with postencephalitic symptomatic dystonia, underwent bilateral Vop/Vim DBS and bimonthly evaluations for 12 months. The primary efficacy outcome was the change in Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) and Barry-Albright Dystonia Scale (BADS) scores between the baseline and 12-month assessments. Video documentation was used for blinded ratings. Secondary outcomes included evaluation of spasticity (Modified Ashworth Scale score), quality of life (Pediatric Quality of Life Inventory [PedsQL] and modified Unified Parkinson’s Disease Rating Scale Part II [UPDRS-II] scores), and neuropsychological assessments. Adverse events were monitored for safety.

RESULTS

All participants tolerated the procedure well, and there were no safety concerns or serious adverse events. There was an average improvement of 21.5% in the BFMDRS motor subscale score, but the improvement was only 1.6% according to the BADS score. Following blinded video review, dystonia severity ratings were even more modest. Secondary outcomes, however, were more encouraging, with the BFMDRS disability subscale score improving by 15.7%, the PedsQL total score by 27%, and the modified UPDRS-II score by 19.3%. Neuropsychological assessment findings were unchanged 1 year after surgery.

CONCLUSIONS

Bilateral thalamic neuromodulation by DBS for severe, medication-refractory acquired dystonia was well tolerated. Primary and secondary outcomes showed highly variable treatment effect sizes comparable to those of pallidal stimulation in this population. As previously described, improvements in quality of life and disability were not reflected in dystonia severity scales, suggesting a need for the development of scales specifically for acquired dystonia.

Clinical trial registration no.: NCT03078816 (clinicaltrials.gov)

Full access

Jill L. Ostrem, Nathan Ziman, Nicholas B. Galifianakis, Philip A. Starr, Marta San Luciano, Maya Katz, Caroline A. Racine, Alastair J. Martin, Leslie C. Markun, and Paul S. Larson

OBJECT

The ClearPoint real-time interventional MRI-guided methodology for deep brain stimulation (DBS) lead placement may offer advantages to frame-based approaches and allow accurate implantation under general anesthesia. In this study, the authors assessed the safety and efficacy of DBS in Parkinson’s disease (PD) using this surgical method.

METHODS

This was a prospective single-center study of bilateral DBS therapy in patients with advanced PD and motor fluctuations. Symptom severity was evaluated at baseline and 12 months postimplantation using the change in Unified Parkinson’s Disease Rating Scale (UPDRS) Part III “off” medication score as the primary outcome variable.

RESULTS

Twenty-six PD patients (15 men and 11 women) were enrolled from 2010 to 2013. Twenty patients were followed for 12 months (16 with a subthalamic nucleus target and 4 with an internal globus pallidus target). The mean UPDRS Part III “off” medication score improved from 40.75 ± 10.9 to 24.35 ± 8.8 (p = 0.001). “On” medication time without troublesome dyskinesia increased 5.2 ± 2.6 hours per day (p = 0.0002). UPDRS Parts II and IV, total UPDRS score, and dyskinesia rating scale “on” medication scores also significantly improved (p < 0.01). The mean levodopa equivalent daily dose decreased from 1072.5 ± 392 mg to 828.25 ± 492 mg (p = 0.046). No significant cognitive or mood declines were observed. A single brain penetration was used for placement of all leads, and the mean targeting error was 0.6 ± 0.3 mm. There were 3 serious adverse events (1 DBS hardware-related infection, 1 lead fracture, and 1 unrelated death).

CONCLUSIONS

DBS leads placed using the ClearPoint interventional real-time MRI-guided method resulted in highly accurate lead placement and outcomes comparable to those seen with frame-based approaches.

Restricted access

Katherine Leaver, Aaron Viser, Brian H. Kopell, Roberto A. Ortega, Joan Miravite, Michael S. Okun, Sonya Elango, Deborah Raymond, Susan B. Bressman, Rachel Saunders-Pullman, and Marta San Luciano

OBJECTIVE

The objective of this study was to evaluate clinical features and response to deep brain stimulation (DBS) in G2019S LRRK2-Parkinson disease (LRRK2-PD) and idiopathic PD (IPD).

METHODS

The authors conducted a clinic-based cohort study of PD patients recruited from the Mount Sinai Beth Israel Genetics database of PD studies. The cohort included 87 participants with LRRK2-PD (13 who underwent DBS) and 14 DBS participants with IPD enrolled between 2009 and 2017. The baseline clinical features, including motor ratings and levodopa-equivalent daily dose (LEDD), were compared among LRRK2-PD patients with and without DBS, between LRRK2-PD with DBS and IPD with DBS, and between LRRK2-PD with subthalamic nucleus (STN) and internal segment of the globus pallidus (GPi) DBS. Longitudinal motor scores (Unified Parkinson’s Disease Rating Scale–part III) and medication usage were also assessed pre- and postoperatively.

RESULTS

Compared to LRRK2-PD without DBS (n = 74), the LRRK2-PD with DBS cohort (n = 13) had a significantly younger age of onset, longer disease duration, were more likely to have dyskinesia, and were less likely to experience hand tremor at disease onset. LRRK2-PD participants were also more likely to be referred for surgery because of severe dyskinesia (11/13 [85%] vs 6/14 [43%], p = 0.04) and were less likely to be referred for medically refractory tremor (0/13 [0%] vs 6/14 [43%], p = 0.02) than were IPD patients. Among LRRK2-PD patients, both STN-DBS and GPi-DBS targets were effective, although the sample size was small for both groups. There were no revisions or adverse effects reported in the GPi-DBS group, while 2 of the LRRK2-PD participants who underwent STN-DBS required revisions and a third reported depression as a stimulation-related side effect. Medication reduction favored the STN group.

CONCLUSIONS

The LRRK2-PD cohort referred for DBS had a slightly different profile, including earlier age of onset and dyskinesia. Both the STN and GPi DBS targets were effective in symptom suppression. Patients with G2019S LRRK2 PD were well-suited for DBS therapy and had favorable motor outcomes regardless of the DBS target. LRRK2-DBS patients had longer disease durations and tended to have more dyskinesia. Dyskinesia commonly served as the trigger for DBS surgical candidacy. Medication-refractory tremor was not a common indication for surgery in the LRRK2 cohort.