Search Results

You are looking at 1 - 10 of 22 items for

  • Author or Editor: Mark E. Oppenlander x
Clear All Modify Search
Full access

Michael A. Mooney, Mark E. Oppenlander, U. Kumar Kakarla and Nicholas Theodore

Tumoral calcinosis is characterized by tumor-like deposition of calcium in periarticular soft tissue. Spinal involvement is rare, and perioperative diagnosis of tumoral calcinosis can be difficult because lesions may be confused with bony neoplasms. Symptoms of tumoral calcinosis result from bony involvement and/or direct compression of surrounding anatomical structures, for which treatment with surgical decompression can be highly successful. The craniovertebral junction is rarely affected by tumoral calcinosis, and patients with this condition may present with distinct symptoms. Herein, to their knowledge the authors present the first case of tumoral calcinosis affecting the craniovertebral junction in a patient who presented with severe dysphagia and required transoral decompression. Recognition of tumoral calcinosis by neurosurgeons is essential for facilitating diagnosis and treatment, and the transoral approach is an effective method for decompression in select patients.

Full access

Mark E. Oppenlander, Forrest D. Hsu, Patrick Bolton and Nicholas Theodore

Although exceedingly rare, catastrophic neurological decline may result from endotracheal intubation of patients with preexisting cervical spine disease. The authors report on 2 cases of quadriplegia resulting from emergent endotracheal intubation in the intensive care unit.

A 68-year-old man with ankylosing spondylitis became quadriplegic after emergent intubation. A new C6–7 fracturedislocation was identified, and the patient underwent emergent open reduction and C4–T2 posterior fixation and fusion. The patient remained quadriplegic and ultimately died of pneumonia 1 year later. This is the first report with radiographic documentation of a cervical fracture-dislocation resulting from intubation in a patient with ankylosing spondylitis.

A 73-year-old man underwent posterior C6–T1 decompression and fixation for a C6–7 fracture. On postoperative Day 12, emergent intubation for respiratory distress resulted in C6-level quadriplegia. Imaging revealed acute spondyloptosis at C6–7, and the patient underwent emergent open reduction with revision and extension of posterior fusion from C-3 to T-2. He remained quadriplegic and ventilator dependent. Five days after the second operation, care was withdrawn. This is the first report of intubation as a cause of significant neurological decline related to disruption of a recently fixated cervical fracture.

Risk factors are identified and pertinent literature is reviewed for cases of catastrophic neurological complications after emergent endotracheal intubation. Strategies for obtaining airway control in patients with cervical spine pathology are also identified. Awareness of the potential dangers of airway management in patients with cervical spine pathology is critical for all involved subspecialty team members.

Restricted access

Mark E. Oppenlander, M. Yashar S. Kalani and Curtis A. Dickman

Cavernous malformations (CMs) are found throughout the CNS but are relatively uncommon in the spine. In this report, the authors describe a giant CM with the imaging appearance of an aggressive, invasive, expansive tumor in the cervical spine. The intradural extramedullary portion of the tumor originated from a cervical nerve root; histologically, the lesion was identified as an intraneural CM. Most of the tumor extended into the paraspinal tissues. The tumor was also epidural, intraosseous, and osteolytic and had completely encased cervical nerve roots, peripheral nerves, branches of the brachial plexus, and the vertebral artery on the right side. It became symptomatic during the puerperal period. Gross-total resection was achieved using staged operative procedures, complex dural reconstruction, spinal fixation, and fusion. Clinical, radiographic, and histological details, as well as a discussion of the relevant literature, are provided.

Free access

Mark E. Oppenlander, Justin C. Clark, James Kalyvas and Curtis A. Dickman

Object

Symptomatic herniated thoracic discs (HTDs) are rare, and patients infrequently require treatment of 2 or more disc levels. The authors assess the surgical management and outcomes of patients with multiple-level symptomatic HTDs.

Methods

A retrospective review of a prospectively maintained database was performed of 220 consecutive patients treated surgically for symptomatic HTDs. Clinical and surgical results were compared between patients with single-level disease and patients with multiple-level disease and also among the different approaches used for surgical decompression.

Results

Between 1992 and 2012, 56 patients (mean age 48 years; 26 male, 30 female) underwent 62 procedures for 130 HTDs. Forty-six patients (82%) had myelopathy, and 36 (64%) had thoracic radiculopathy; 24 patients had both conditions in varying degree. Symptom duration averaged 28 months. The surgical approach was dictated by disc size, consistency, and location. Twenty-three thoracotomy, 26 thoracoscopy, and 13 posterolateral procedures were performed. Five patients required a combination of approaches. Patients underwent 2-level (n = 44), 3-level (n = 7), 4-level (n = 4), or 5-level (n = 1) discectomies. Instrumented fusion was performed in 36 patients (64%). Thirteen patients harbored 19 additional discs, which were deemed asymptomatic/nonoperative.

The mean hospital stay was 6.5 days. Complete disc resection was verified with postoperative imaging in every patient. The procedural complication rate was 23%, and the nature of complications differed based on approach. No patients had surgery-related spinal cord injury or new myelopathy.

At a mean follow-up of 48 months, myelopathy and radiculopathy had resolved or improved at a rate of 85% and 92%, respectively. Using a general linear model, preoperative symptom duration (p = 0.037) and perioperative hospital length of stay (p = 0.004) emerged as negative predictors of myelopathy improvement. Most patients (96%) were satisfied with the surgical results.

Compared with 164 patients who underwent single-level HTD decompression, patients requiring surgery for multiple-level HTDs were more often myelopathic (p = 0.012). Surgery for multiple-level HTDs was more likely to require a thoracotomy approach (p = 0.00055) and instrumented fusion (p < 0.0001) and resulted in greater blood loss (p = 0.0036) and higher complication rates (p = 0.0069). The rates of resolution for myelopathy (p = 0.24) and radiculopathy (p = 1.0), however, were similar between the 2 patient groups.

Conclusions

The management of multiple-level symptomatic HTDs is complex, requiring individualized clinical decision making. The surgical approaches must be selected to minimize manipulation of the compressed thoracic spinal cord, and a patient may require a combination of approaches. Excellent surgical results can be achieved in this unique and challenging patient population.

Restricted access

Clay M. Elswick, Siri Sahib S. Khalsa, Yamaan S. Saadeh, Aditya S. Pandey and Mark E. Oppenlander

Spinal dural arteriovenous fistulas are diagnostically challenging lesions, and they are not well described in patients with a history of a spinal deformity correction. The authors present the challenging case of a 74-year-old woman who had previously undergone correction of a spinal deformity with subsequent revision. Several years after the last deformity operation, she developed a progressive myelopathy with urinary incontinence over a 6-month period. After evaluation at the authors’ institution, an angiogram was obtained, demonstrating a fistula at the T12–L1 region. Surgical ligation of the fistula was performed with subsequent improvement of the neurological symptoms. This case is thought to represent the first fistula documented in an area of the spine that had previously been operated on, and to the authors’ knowledge, it is the first case report to be associated with spinal deformity surgery. A brief historical overview and review of the pathophysiology of spinal dural arteriovenous fistulas is also included.

Free access

Jay K. Nathan, Mitchell A. Johnson, Jennifer F. Waljee, Nicholas Szerlip, Paul Park and Mark E. Oppenlander

OBJECTIVE

Approximately 550,000 Americans experience vertebral fracture annually, and most receive opioids to treat the resulting pain. Kyphoplasty of the fractured vertebra is a procedural alternative that may mitigate risks of even short-term opioid use. While reports of kyphoplasty’s impact on pain scores are mixed, no large-scale data exist regarding opioid prescribing before and after the procedure. This study was conducted to determine whether timing of kyphoplasty following vertebral fracture is associated with duration or intensity of opioid prescribing.

METHODS

This retrospective cohort study used 2001–2014 insurance claims data from a single, large private insurer in the US across multiple care settings. Patients were adults with vertebral fractures who were prescribed opioids and underwent balloon-assisted kyphoplasty within 4 months of fracture. Opioid overdose risk was stratified by prescribed average daily morphine milligram equivalents using CDC guidelines. Filled prescriptions and risk categories were evaluated at baseline and 90 days following kyphoplasty.

RESULTS

Inclusion criteria were met by 7119 patients (median age 77 years, 71.7% female). Among included patients, 3505 (49.2%) were opioid naïve before fracture. Of these patients, 31.1% had new persistent opioid prescribing beyond 90 days after kyphoplasty, and multivariable logistic regression identified kyphoplasty after 8 weeks as a predictor (OR 1.34, 95% CI 1.02–1.76). For patients previously receiving opioids, kyphoplasty > 4 weeks after fracture was associated with persistently elevated prescribing risk (OR 1.84, 95% CI 1.23–2.74).

CONCLUSIONS

New persistent opioid prescribing occurred in nearly one-third of patients undergoing kyphoplasty after vertebral fracture, although early treatment was associated with a reduction in this risk. For patients not naïve to opioids before fracture diagnosis, early kyphoplasty was associated with less persistent elevation of opioid overdose risk. Subsequent trials must compare opioid use by vertebral fracture patients treated via operative (kyphoplasty) and nonoperative (ongoing opioid) strategies before concluding that kyphoplasty lacks value, and early referral for kyphoplasty may be appropriate to avoid missing a window of efficacy.

Free access

M. Yashar S. Kalani, Ting Lei, Nikolay L. Martirosyan, Mark E. Oppenlander, Robert F. Spetzler and Peter Nakaji

The mesial temporal lobe can be approached via a pterional or orbitozygomatic craniotomy, the subtemporal approach, or transcortically. Alternatively, the entire mesial temporal lobe can be accessed using a lateral supracerebellar transtentorial (SCTT) approach. Here we describe the technical nuances of patient positioning, craniotomy, supracerebellar dissection, and tentorial disconnection to traverse the tentorial incisura to arrive at the posterior mesial temporal lobe for a cavernous malformation. The SCTT approach is especially useful for lesions in the dominant temporal lobe where an anterolateral approach may endanger language centers or the vein of Labbé.

The video can be found here: https://youtu.be/D8mIR5yeiVw.

Free access

Yamaan S. Saadeh, Brandon W. Smith, Jacob R. Joseph, Sohaib Y. Jaffer, Martin J. Buckingham, Mark E. Oppenlander, Nicholas J. Szerlip and Paul Park

OBJECTIVE

Spinal cord injury (SCI) results in significant morbidity and mortality. Improving neurological recovery by reducing secondary injury is a major principle in the management of SCI. To minimize secondary injury, blood pressure (BP) augmentation has been advocated. The objective of this study was to review the evidence behind BP management after SCI.

METHODS

This systematic review was conducted following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Using the PubMed database, the authors identified studies that investigated BP management after acute SCI. Information on BP goals, duration of BP management, vasopressor selection, and neurological outcomes were analyzed.

RESULTS

Eleven studies that met inclusion criteria were identified. Nine studies were retrospective, and 2 were single-cohort prospective investigations. Of the 9 retrospective studies, 7 reported a goal mean arterial pressure (MAP) of higher than 85 mm Hg. For the 2 prospective studies, the MAP goals were higher than 85 mm Hg and higher than 90 mm Hg. The duration of BP management varied from more than 24 hours to 7 days in 6 of the retrospective studies that reported the duration of treatment. In both prospective studies, the duration of treatment was 7 days. In the 2 prospective studies, neurological outcomes were stable to improved with BP management. The retrospective studies, however, were contradictory with regard to the correlation of BP management and outcomes. Dopamine, norepinephrine, and phenylephrine were the agents that were frequently used to augment BP. However, more complications have been associated with dopamine use than with the other vasopressors.

CONCLUSIONS

There are no high-quality data regarding optimal BP goals and duration in the management of acute SCI. Based on the highest level of evidence available from the 2 prospective studies, MAP goals of 85–90 mm Hg for a duration of 5–7 days should be considered. Norepinephrine for cervical and upper thoracic injuries and phenylephrine or norepinephrine for mid- to lower thoracic injuries should be considered.

Free access

Michael J. Strong, Timothy J. Yee, Siri Sahib S. Khalsa, Yamaan S. Saadeh, Kevin N. Swong, Osama N. Kashlan, Nicholas J. Szerlip, Paul Park and Mark E. Oppenlander

OBJECTIVE

The lateral lumbar interbody fusion (LLIF) technique is used to treat many common spinal degenerative pathologies including kyphoscoliosis. The use of spinal navigation for LLIF has not been broadly adopted, especially in adult spinal deformity. The purpose of this study was to evaluate the feasibility as well as the intraoperative and navigation-related complications of computer-assisted 3D navigation (CaN) during multiple-level LLIF for spinal deformity.

METHODS

Retrospective analysis of clinical and operative characteristics was performed for all patients > 18 years of age who underwent multiple-level CaN LLIF combined with posterior instrumentation for adult spinal deformity at the University of Michigan between 2014 and 2020. Intraoperative CaN-related complications, LLIF approach–related postoperative complications, and medical postoperative complications were assessed.

RESULTS

Fifty-nine patients were identified. The mean age was 66.3 years (range 42–83 years) and body mass index was 27.6 kg/m2 (range 18–43 kg/m2). The average coronal Cobb angle was 26.8° (range 3.6°–67.0°) and sagittal vertical axis was 6.3 cm (range −2.3 to 14.7 cm). The average number of LLIF and posterior instrumentation levels were 2.97 cages (range 2–5 cages) and 5.78 levels (range 3–14 levels), respectively. A total of 6 intraoperative complications related to the LLIF stage occurred in 5 patients. Three of these were CaN-related and occurred in 2 patients (3.4%), including 1 misplaced lateral interbody cage (0.6% of 175 total lateral cages placed) requiring intraoperative revision. No patient required a return to the operating room for a misplaced interbody cage. A total of 12 intraoperative complications related to the posterior stage occurred in 11 patients, with 5 being CaN-related and occurring in 4 patients (6.8%). Univariate and multivariate analyses revealed no statistically significant risk factors for intraoperative and CaN-related complications. Transient hip weakness and numbness were found to be in 20.3% and 22.0% of patients, respectively. At the 1-month follow-up, weakness was observed in 3.4% and numbness in 11.9% of patients.

CONCLUSIONS

Use of CaN in multiple-level LLIF in the treatment of adult spinal deformity appears to be a safe and effective technique. The incidence of approach-related complications with CaN was 3.4% and cage placement accuracy was high.

Free access

Yamaan S. Saadeh, Clay M. Elswick, Eleanor Smith, Timothy J. Yee, Michael J. Strong, Kevin Swong, Brandon W. Smith, Mark E. Oppenlander, Osama N. Kashlan and Paul Park

OBJECTIVE

Age is known to be a risk factor for increased complications due to surgery. However, elderly patients can gain significant quality-of-life benefits from surgery. Lateral lumbar interbody fusion (LLIF) is a minimally invasive procedure that is commonly used to treat degenerative spine disease. Recently, 3D navigation has been applied to LLIF. The purpose of this study was to determine whether there is an increased complication risk in the elderly with navigated LLIF.

METHODS

Patients who underwent 3D-navigated LLIF for degenerative disease from 2014 to 2019 were included in the analysis. Patients were divided into elderly and nonelderly groups, with those 65 years and older categorized as elderly. Ninety-day medical and surgical complications were recorded. Patient and surgical characteristics were compared between groups, and multivariate regression analysis was used to determine independent risk factors for complication.

RESULTS

Of the 115 patients included, 56 were elderly and 59 were nonelderly. There were 15 complications (25.4%) in the nonelderly group and 10 (17.9%) in the elderly group, which was not significantly different (p = 0.44). On multivariable analysis, age was not a risk factor for complication (p = 0.52). However, multiple-level LLIF was associated with an increased risk of approach-related complication (OR 3.58, p = 0.02).

CONCLUSIONS

Elderly patients do not appear to experience higher rates of approach-related complications compared with nonelderly patients undergoing 3D navigated LLIF. Rather, multilevel surgery is a predictor for approach-related complication.