Search Results

You are looking at 1 - 10 of 17 items for

  • Author or Editor: Mario Zanaty x
Clear All Modify Search
Full access

Patrick W. Hitchon, Mario Zanaty, Logan Helland, Kingsley Abode-Iyamah and Nader S. Dahdaleh

Free access

Chandan G. Reddy, Oliver E. Flouty, Marshall T. Holland, Leigh A. Rettenmaier, Mario Zanaty and Foad Elahi

OBJECTIVE

Peripheral nerve stimulation (PNS) has been used for the treatment of neuropathic pain for many decades. Despite the specific indications for PNS, clinicians often have difficulty screening for candidates likely to have a good or fair outcome. Given the expense of a permanent implant, most insurance companies will not pay for the implant without a successful PNS trial. And since PNS has only recently been approved by the US Food and Drug Administration, many insurance companies will not pay for a conventional trial of PNS. The objective of this study is to describe a short low-cost method for trialing and screening patients for peripheral nerve stimulator implantation. Additionally, this study demonstrates the long-term efficacy of PNS in the treatment of chronic neuropathic pain and the relative effectiveness of this novel screening method.

METHODS

The records of all patients who had undergone trialing and implantation of a PNS system for chronic refractory pain at the authors' institution over a 1-year period (August 1, 2012–July 31, 2013) were examined in this retrospective case series. The search revealed 17 patients, 13 who had undergone a novel in-office ultrasonography-guided StimuCath screening technique and 4 who had undergone a traditional week-long screening procedure. All 17 patients experienced a successful PNS trial and proceeded to permanent PNS system implantation. Patients were followed up for a mean duration of 3.0 years. Visual analog scale (VAS) pain scores were used to assess pain relief in the short-term (< 6 weeks), at 1 year, and at the last follow-up. Final outcome was also characterized as good, fair, poor, or bad.

RESULTS

Of these 17 patients, 10 were still using their stimulator at the last follow-up, with 8 of them obtaining good relief (classified as ≥ 50% pain relief, with an average 81% reduction in the VAS score) and 2 patients attaining fair relief (< 50% relief but still using stimulation therapy). Among the remaining 7 patients, the stimulator had been explanted in 4 and there had been no relief in 3. Excluding explanted cases, follow-up ranged from 14 to 46 months, with an average of 36 months. Patients with good or fair relief had experienced pain prior to implantation for an average of 5.1 years (range 1.8–15.2 years). A longer duration of pain trended toward a poorer outcome (bad outcome 7.6 years vs good outcome 4.1 years, p = 0.03). Seven (54%) of the 13 patients with the shorter trial experienced a good or fair outcome with an average 79% reduction in the VAS score; however, all 4 of the bad outcome cases came from this group. Three (75%) of the 4 patients with the longer trial experienced a good or fair outcome at the last follow-up, with an average 54% reduction in the VAS score. There was no difference between the trialing methods and the proportion of favorable (good or fair) outcomes (p = 0.71).

CONCLUSIONS

Short, ultrasonography-guided StimuCath trials were feasible in screening patients for permanent implantation of PNS, with efficacy similar to the traditional week-long screening noted at the 3-year follow-up.

Free access

Rafael Martinez-Perez, Guru Dutta-Satyarthee, Ezequiel García-Ballestas, Amit Agrawal and Luis Rafael Moscote-Salazar

Full access

Mario Zanaty, Nohra Chalouhi, Robert M. Starke, Shannon W. Clark, Cory D. Bovenzi, Mark Saigh, Eric Schwartz, Emily S. I. Kunkel, Alexandra S. Efthimiadis-Budike, Pascal Jabbour, Richard Dalyai, Robert H. Rosenwasser and Stavropoula I. Tjoumakaris

OBJECT

The factors that contribute to periprocedural complications following cranioplasty, including patient-specific and surgery-specific factors, need to be thoroughly assessed. The aim of this study was to evaluate risk factors that predispose patients to an increased risk of cranioplasty complications and death.

METHODS

The authors conducted a retrospective review of all patients at their institution who underwent cranioplasty following craniectomy for stroke, subarachnoid hemorrhage, epidural hematoma, subdural hematoma, and trauma between January 2000 and December 2011. The following predictors were tested: age, sex, race, diabetic status, hypertensive status, tobacco use, reason for craniectomy, urgency status of the craniectomy, graft material, and location of cranioplasty. The cranioplasty complications included reoperation for hematoma, hydrocephalus postcranioplasty, postcranioplasty seizures, and cranioplasty graft infection. A multivariate logistic regression analysis was performed. Confidence intervals were calculated as the 95% CI.

RESULTS

Three hundred forty-eight patients were included in the study. The overall complication rate was 31.32% (109 of 348). The mortality rate was 3.16%. Predictors of overall complications in multivariate analysis were hypertension (OR 1.92, CI 1.22–3.02), increasing age (OR 1.02, CI 1.00–1.04), and hemorrhagic stroke (OR 3.84, CI 1.93–7.63). Predictors of mortality in multivariate analysis were diabetes mellitus (OR 7.56, CI 1.56–36.58), seizures (OR 7.25, CI 1.238–42.79), bifrontal cranioplasty (OR 5.40, CI 1.20–24.27), and repeated surgery for hematoma evacuation (OR 13.00, CI 1.51–112.02). Multivariate analysis was also applied to identify the variables that affect the development of seizures, the need for reoperation for hematoma evacuation, the development of hydrocephalus, and the development of infections.

CONCLUSIONS

The authors' goal was to provide the neurosurgeon with predictors of morbidity and mortality that could be incorporated in the clinical decision-making algorithm. Control of a patient's risk factors and early recognition of complications may help practitioners avoid the exhaustive list of complications.

Free access

Mario Zanaty, Jorge A. Roa, Daichi Nakagawa, Nohra Chalouhi, Lauren Allan, Sami Al Kasab, Kaustubh Limaye, Daizo Ishii, Edgar A. Samaniego, Pascal Jabbour, James C. Torner and David M. Hasan

OBJECTIVE

Aspirin has emerged as a potential agent in the prevention of rupture of intracranial aneurysms (IAs). In this study, the authors’ goal was to test if aspirin is protective against aneurysm growth in patients harboring multiple IAs ≤ 5 mm.

METHODS

The authors performed a retrospective review of a prospectively maintained database covering the period July 2009 through January 2019. Patients’ data were included if the following criteria were met: 1) the patient harbored multiple IAs; 2) designated primary aneurysms were treated by surgical/endovascular means; 3) the remaining aneurysms were observed for growth; and 4) a follow-up period of at least 5 years after the initial treatment was available. Demographics, earlier medical history, the rupture status of designated primary aneurysms, aneurysms’ angiographic features, and treatment modalities were gathered.

RESULTS

The authors identified 146 patients harboring a total of 375 IAs. At the initial encounter, 146 aneurysms were treated and the remaining 229 aneurysms (2–5 mm) were observed. During the follow-up period, 24 (10.48%) of 229 aneurysms grew. All aneurysms observed to grow later underwent treatment. None of the observed aneurysms ruptured. Multivariate analysis showed that aspirin was significantly associated with a decreased rate of growth (odds ratio [OR] 0.19, 95% confidence interval [CI] 0.05–0.63). Variables associated with an increased rate of growth included hypertension (OR 14.38, 95% CI 3.83–53.94), drug abuse (OR 11.26, 95% CI 1.21–104.65), history of polycystic kidney disease (OR 9.48, 95% CI 1.51–59.35), and subarachnoid hemorrhage at presentation (OR 5.91, 95% CI 1.83–19.09).

CONCLUSIONS

In patients with multiple IAs, aspirin significantly decreased the rate of aneurysm growth over time. Additional prospective interventional studies are needed to validate these findings.

Restricted access

Jorge A. Roa, Mario Zanaty, Carlos Osorno-Cruz, Daizo Ishii, Girish Bathla, Santiago Ortega-Gutierrez, David M. Hasan and Edgar A. Samaniego

OBJECTIVE

High-resolution vessel wall imaging (HR-VWI) has emerged as a valuable tool in assessing unruptured intracranial aneurysms (UIAs). There is no standardized method to quantify contrast enhancement of the aneurysm wall. Contrast enhancement can be objectively measured as signal intensity (SI) or subjectively adjudicated. In this study, the authors compared the different methods to quantify wall enhancement of UIAs and determined the sensitivity and specificity of each method as a surrogate of aneurysm instability. They also compared SI quantification between scanners from different manufacturers.

METHODS

The University of Iowa HR-VWI Project database was analyzed. This database compiles patients with UIAs who prospectively underwent HR-VWI using a 3T MRI scanner. The mean and maximal SI values of the aneurysm wall, pituitary stalk, and genu of the corpus callosum were used to compare 3 different measurement methods: 1) aneurysm enhancement ratio AER = (SIwall post − SIwall pre)/SIwall pre; 2) aneurysm-to–pituitary stalk contrast ratio CRstalk = SIwall post/SIstalk post; and 3) aneurysm enhancement index AEI = ([SIwall post/SIbrain post] − [SIwall pre/SIbrain pre])/(SIwall pre/SIbrain pre) (where “pre” indicates precontrast images and “post” indicates postcontrast images). Size ≥ 7 mm was used as a surrogate of aneurysm instability for receiver operating characteristic (ROC) curve analysis. To determine if the objective quantification of SI varies among scanners from different manufacturers, 9 UIAs underwent the same HR-VWI protocol using a 3T General Electric (GE) scanner and a 3T Siemens scanner. Three UIAs also underwent a third scanning procedure on a unit with a different magnet strength (7T GE).

RESULTS

Eighty patients with 102 UIAs were included in the study. The mean age was 64.5 ± 12.2 years, and 64 (80%) patients were women. UIAs ≥ 7 mm had significantly higher SIs than smaller UIAs (< 7 mm): AER = 0.82 vs 0.49, p < 0.001; CRstalk = 0.84 vs 0.61, p < 0.001; and AEI = 0.81 vs 0.48, p < 0.001. ROC curves demonstrated optimal sensitivity of 81.5% for CRstalk ≥ 0.60, 75.9% for AEI ≥ 0.50, and 74.1% for AER ≥ 0.49. Intermanufacturer correlation between 3T GE and 3T Siemens MRI scanners for CRstalk using mean and maximal SI values was excellent (Pearson coefficients > 0.80, p < 0.001). A similar correlation was identified among the 3 UIAs that underwent 7T imaging.

CONCLUSIONS

CRstalk using maximal SI values was the most reliable objective method to quantify enhancement of UIAs on HR-VWI. The same ratios were obtained between different manufacturers and on scans obtained using magnets of different strengths.

Restricted access

Jorge A. Roa, Mario Zanaty, Daizo Ishii, Yongjun Lu, David K. Kung, Robert M. Starke, James C. Torner, Pascal M. Jabbour, Edgar A. Samaniego and David M. Hasan

OBJECTIVE

Inflammation plays an integral role in the formation, growth, and progression to rupture of unruptured intracranial aneurysms (UIAs). Animal and human studies have suggested that, due to its antiinflammatory effect, aspirin (ASA) may decrease the risks of growth and rupture of UIAs. High-resolution vessel wall imaging (HR-VWI) has emerged as a noninvasive method to assess vessel wall inflammation and UIA instability. To the authors’ knowledge, to date no studies have found a significant correlation between patient use of ASA and contrast enhancement of UIAs on HR-VWI.

METHODS

The University of Iowa HR-VWI Project database was analyzed. This database is a compilation of data on patients with UIAs who prospectively underwent HR-VWI on a 3T Siemens MRI scanner. The presence of aneurysmal wall enhancement was objectively defined using the aneurysm-to–pituitary stalk contrast ratio (CRstalk). This ratio was calculated by measuring the maximal signal intensity in the aneurysmal wall and the pituitary stalk on postcontrast T1-weighted images. Data on aneurysm size, morphology, and location and patient demographics and comorbidities were collected. Use of ASA was defined as daily intake of ≥ 81 mg during the previous 6 months or longer. Univariate and multivariate logistic regression analyses were performed to determine factors independently associated with increased contrast enhancement of UIAs on HR-VWI.

RESULTS

In total, 74 patients harboring 96 UIAs were included in the study. The mean patient age was 64.7 ± 12.4 years, and 60 patients (81%) were women. Multivariate analysis showed that age (OR 1.12, 95% CI 1.05–1.19), aneurysm size ≥ 7 mm (OR 21.3, 95% CI 4.88–92.8), and location in the anterior communicating, posterior communicating, and basilar arteries (OR 10.7, 95% CI 2.45–46.5) were significantly associated with increased wall enhancement on HR-VWI. On the other hand, use of ASA was significantly associated with decreased aneurysmal wall enhancement on HR-VWI (OR 0.22, 95% CI 0.06–0.83, p = 0.026).

CONCLUSIONS

The study results establish a correlation between use of ASA daily for ≥ 6 months and significant decreases in wall enhancement of UIAs on HR-VWI. The findings also demonstrate that detection of wall enhancement using HR-MRI may be a valuable noninvasive method for assessing aneurysmal wall inflammation and UIA instability.

Full access

Nohra Chalouhi, Mario Zanaty, Alex Whiting, Steven Yang, Stavropoula Tjoumakaris, David Hasan, Robert M. Starke, Shannon Hann, Christine Hammer, David Kung, Robert Rosenwasser and Pascal Jabbour

OBJECT

Flow diverters are increasingly used for treatment of intracranial aneurysms. In most series, the Pipeline Embolization Device (PED) was used for the treatment of large, giant, complex, and fusiform aneurysms. Little is known about the use of the PED in small aneurysms. The purpose of this study was to assess the safety and efficacy of the PED in small aneurysms (≤ 7 mm).

METHODS

A total of 100 consecutive patients were treated with the PED at the authors' institution between May 2011 and September 2013. Data on procedural safety and efficacy were retrospectively collected.

RESULTS

The mean aneurysm size was 5.2 ± 1.5 mm. Seven patients (7%) had sustained a subarachnoid hemorrhage. All except 5 aneurysms (95%) arose from the anterior circulation. The number of PEDs used was 1.2 per aneurysm. Symptomatic procedure-related complications occurred in 3 patients (3%): 1 distal parenchymal hemorrhage that was managed conservatively and 2 ischemic events. At the latest follow-up (mean 6.3 months), 54 (72%) aneurysms were completely occluded (100%), 10 (13%) were nearly completely occluded (≥ 90%), and 11 (15%) were incompletely occluded (< 90%). Six aneurysms (8%) required further treatment. Increasing aneurysm size (OR 3.8, 95% CI 0.99–14; p = 0.05) predicted retreatment. All patients achieved a favorable outcome (modified Rankin Scale Score 0–2) at follow-up.

CONCLUSIONS

In this study, treatment of small aneurysms with the PED was associated with low complication rates and high aneurysm occlusion rates. These findings suggest that the PED is a safe and effective alternative to conventional endovascular techniques for small aneurysms. Randomized trials with long-term follow-up are necessary to determine the optimal treatment that leads to the highest rate of obliteration and the best clinical outcomes.

Full access

Kingsley O. Abode-Iyamah, Hsiu-Yin Chiang, Nolan Winslow, Brian Park, Mario Zanaty, Brian J. Dlouhy, Oliver E. Flouty, Zachary D. Rasmussen, Loreen A. Herwaldt and Jeremy D. Greenlee

OBJECTIVE

Craniectomy is often performed to decrease intracranial pressure following trauma and vascular injuries. The subsequent cranioplasty procedures may be complicated by surgical site infections (SSIs) due to prior trauma, foreign implants, and multiple surgeries through a common incision. Several studies have found that intrawound vancomycin powder (VP) is associated with decreased risk of SSIs after spine operations. However, no previously published study has evaluated the effectiveness of VP in cranioplasty procedures. The purpose of this study was to determine whether intrawound VP is associated with decreased risk of SSIs, to evaluate VP’s safety, and to identify risk factors for SSIs after cranioplasty among patients undergoing first-time cranioplasty.

METHODS

The authors conducted a retrospective cohort study of adult patients undergoing first-time cranioplasty for indications other than infections from January 1, 2008, to July 31, 2014, at an academic health center. Data on demographics, possible risk factors for SSIs, and treatment with VP were collected from the patients’ electronic health records.

RESULTS

During the study period, 258 patients underwent first-time cranioplasties, and 15 (5.8%) of these patients acquired SSIs. Ninety-two patients (35.7%) received intrawound VP (VP group) and 166 (64.3%) did not (no-VP group). Patients in the VP group and the no-VP group were similar with respect to age, sex, smoking history, body mass index, and SSI rates (VP group 6.5%, no-VP group 5.4%, p = 0.72). Patients in the VP group were less likely than those in the no-VP group to have undergone craniectomy for tumors and were more likely to have an American Society of Anesthesiologists physical status score > 2. Intrawound VP was not associated with other postoperative complications. Risk factors for SSI from the bivariable analyses were diabetes (odds ratio [OR] 3.65, 95% CI 1.07–12.44), multiple craniotomy procedures before the cranioplasty (OR 4.39, 95% CI 1.47–13.18), prior same-side craniotomy (OR 4.73, 95% CI 1.57–14.24), and prosthetic implants (OR 4.51, 95% CI 1.40–14.59). The multivariable analysis identified prior same-side craniotomy (OR 3.37, 95% CI 1.06–10.79) and prosthetic implants (OR 3.93, 95% CI 1.15–13.40) as significant risk factors for SSIs. After adjusting for potential confounders, patients with SSIs were more likely than those without SSIs to be readmitted (OR 7.28, 95% CI 2.07–25.60).

CONCLUSIONS

In this study, intrawound VP was not associated with a decreased risk of SSIs or with an increased risk of complications. Prior same-side craniotomy and prosthetic implants were risk factors for SSI after first-time cranioplasty.

Full access

Nohra Chalouhi, Mario Zanaty, Stavropoula Tjoumakaris, Philip Manasseh, David Hasan, Ketan R. Bulsara, Robert M. Starke, Kevin Lawson, Robert Rosenwasser and Pascal Jabbour

OBJECT

Endovascular interventions have become an essential part of a neurosurgeon’s practice. Whether endovascular procedures have been effectively integrated into residency curricula, however, remains uncertain. The purpose of this study was to assess the preparedness of US neurosurgery graduate trainees for neuroendovascular fellowship.

METHODS

A multidomain, global assessment survey was sent to all directors/faculty of neuroendovascular fellowship programs involved in training of US neurosurgery graduates. Surveyees were asked to assess trainees as they entered fellowship.

RESULTS

The response rate was 78% (25/32). Of respondent program directors, 38% reported that new fellows did not know the history and imaging of the patient and 50% were unable to formulate an appropriate treatment plan. As many as 79% of fellows were unfamiliar with endovascular devices and 75% were unfamiliar with angiographic equipment. Furthermore, 58% of fellows were unable to perform femoral access, 54% were unable to perform femoral closure, 79% were unable to catheterize a major vessel, 86% were unable to perform a 4-vessel angiogram, and 100% were unable to catheterize an aneurysm. Additionally, program directors reported that over 50% of fellows could not recognize neurovascular anatomy and 54% could not recognize/classify vascular abnormalities. There was an overall agreement that fellows demonstrated professionalism and interest in research and had good communication/clinical skills.

CONCLUSIONS

The results of this study suggest potential gaps in the training of neurosurgery residents with regard to endovascular neurosurgery. In an era of minimally invasive therapies, changes in residency curricula may be needed to keep pace with the ever-changing field of neurosurgery.