Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: Maria Peris-Celda x
Clear All Modify Search
Restricted access

Vittorio M. Russo, Francesca Graziano, Maria Peris-Celda, Antonino Russo and Arthur J. Ulm

Object

Iatrogenic injury of the V2 segment of the vertebral artery (VA) is a rare but serious complication and can be catastrophic. The purpose of this study was to characterize the relationship of the V2 segment of the VA to the surrounding anatomical structures and to highlight the potential site and mechanisms of injury that can occur during common neurosurgical procedures involving the subaxial cervical spine.

Methods

Ten adult cadaveric specimens (20 sides) were included in this study. Quantitative anatomical measurements between selected landmarks and the VA were obtained. In addition, lateral mass screws were placed bilaterally, from C-3 to C-7, reproducing either the Magerl technique or a modified technique. The safety angle, defined as the axial deviation from the screw trajectory needed to injure the VA, and the distance from the entry point to the VA were measured at each level for both techniques.

Results

The VA coursed closer to the midline at C3–4 and C4–5 (mean distance [SD] 14.9 ± 1.1 mm) than at C2–3 or C5–6. Within the intertransverse space it coursed closer to the uncinate processes of the vertebral bodies (1.8 ± 1.1 mm) than to the anterior tubercle of the transverse processes (3.4 ± 1.6 mm). The distance between the VA and the uncinate process was less at C3–6 (1.3 ± 0.7 mm) than at C2–3 (3.3 ± 0.8 mm). The VA coursed on average at a distance of 11.9 ± 1.7 mm from the anterior and 4.2 ± 2.6 mm from the posterior aspect of the intervertebral disc space. Lateral mass screw angles were 25° lateral and 39.1° cranial for the Magerl technique, and 36.6° lateral and 46.1° cranial for the modified technique. The safety angle was greater and screw length longer when using this modified technique.

Conclusions

The relation of the V2 segment of the VA to anterior procedures and lateral mass instrumentation at the subaxial cervical spine was reviewed in this study. A detailed anatomical knowledge of the V2 segment of the VA combined with careful preoperative imaging is mandatory for safe cervical spine surgery.

Restricted access

Maria Peris-Celda, Francesca Graziano, Vittorio Russo, Robert A. Mericle and Arthur J. Ulm

Object

Foramen ovale (FO) puncture allows for trigeminal neuralgia treatment, FO electrode placement, and selected biopsy studies. The goals of this study were to demonstrate the anatomical basis of complications related to FO puncture, and provide anatomical landmarks for improvement of safety, selective lesioning of the trigeminal nerve (TN), and optimal placement of electrodes.

Methods

Both sides of 50 dry skulls were studied to obtain the distances from the FO to relevant cranial base references. A total of 36 sides from 18 formalin-fixed specimens were dissected for Meckel cave and TN measurements. The best radiographic projection for FO visualization was assessed in 40 skulls, and the optimal trajectory angles, insertion depths, and topographies of the lesions were evaluated in 17 specimens. In addition, the differences in postoperative pain relief after the radiofrequency procedure among different branches of the TN were statistically assessed in 49 patients to determine if there was any TN branch less efficiently targeted.

Results

Most severe complications during FO puncture are related to incorrect needle placement intracranially or extracranially. The needle should be inserted 25 mm lateral to the oral commissure, forming an approximately 45° angle with the hard palate in the lateral radiographic view, directed 20° medially in the anteroposterior view. Once the needle reaches the FO, it can be advanced by 20 mm, on average, up to the petrous ridge. If the needle/radiofrequency electrode tip remains more than 18 mm away from the midline, injury to the cavernous carotid artery is minimized. Anatomically there is less potential for complications when the needle/radiofrequency electrode is advanced no more than 2 mm away from the clival line in the lateral view, when the needle pierces the medial part of the FO toward the medial part of the trigeminal impression in the petrous ridge, and no more than 4 mm in the lateral part. The 40°/45° inferior transfacial–20° oblique radiographic projection visualized 96.2% of the FOs in dry skulls, and the remainder were not visualized in any other projection of the radiograph. Patients with V1 involvement experienced postoperative pain more frequently than did patients with V2 or V3 involvement. Anatomical targeting of V1 in specimens was more efficiently achieved by inserting the needle in the medial third of the FO; for V2 targeting, in the middle of the FO; and for V3 targeting, in the lateral third of the FO.

Conclusions

Knowledge of the extracranial and intracranial anatomical relationships of the FO is essential to understanding and avoiding complications during FO puncture. These data suggest that better radiographic visualization of the FO can improve lesioning accuracy depending on the part of the FO to be punctured. The angles and safety distances obtained may help the neurosurgeon minimize complications during FO puncture and TN lesioning.

Restricted access

Hirokazu Takami, Christoph M. Prummer, Christopher S. Graffeo, Maria Peris-Celda, Caterina Giannini, Colin L. Driscoll and Michael J. Link

Glioblastoma (GBM) of the internal auditory canal (IAC) is exceedingly rare, with only 3 prior cases reported in the literature. The authors present the fourth case of cerebellopontine angle (CPA) and IAC GBM, and the first in which the lesion mimicked a vestibular schwannoma (VS) early in its natural history. A 55-year-old man presented with tinnitus, hearing loss, and imbalance. MRI identified a left IAC/CPA lesion measuring 8 mm, most consistent with a benign VS. Over the subsequent 4 months he developed facial weakness. The tumor grew remarkably to 24 mm and surgery was recommended; the main preoperative diagnosis was malignant peripheral nerve sheath tumor (MPNST). Resection proceeded via a translabyrinthine approach with resection of cranial nerves VII and VIII, followed by facial-hypoglossal nerve anastomosis. Intraoperative frozen section suggested malignant spindle cell neoplasm, but final histopathological and molecular testing confirmed the lesion to be a GBM. The authors report the first case in which absence of any brainstem interface effectively excluded a primary parenchymal tumor, in particular GBM, from the differential diagnosis. Given the dramatic differences in treatment and prognoses between malignant glioma and MPNST, this case emphasizes the importance of surgical intervention on an aggressively growing lesion, which provides both the best probability of local control and the critical tissue diagnosis.

Restricted access

Maria Peris-Celda, Avital Perry, Lucas P. Carlstrom, Christopher S. Graffeo, Colin L. W. Driscoll and Michael J. Link

OBJECTIVE

Middle fossa surgery is challenging, and reliable surgical landmarks are essential to perform accurate and safe surgery. Although many descriptions of the middle fossa components have been published, a clinically practical description of this very complex anatomical region is lacking. Small structure arrangements in this area are often not well visualized or accurately demarcated with neuronavigation systems. The objective is to describe a “roadmap” of key surgical reference points and landmarks during middle fossa surgery to help the surgeon predict where critical structures will be located.

METHODS

The authors studied 40 dry skulls (80 sides) obtained from the anatomical board at their institution. Measurements of anatomical structures in the middle fossa were made with a digital caliper and a protractor, taking as reference the middle point of the external auditory canal (MEAC). The results were statistically analyzed.

RESULTS

The petrous part of the temporal bone was found at a mean of 16 mm anterior and 24 mm posterior to the MEAC. In 87% and 99% of the sides, the foramen ovale and foramen spinosum, respectively, were encountered deep to the zygomatic root. The posterior aspect of the greater superficial petrosal nerve (GSPN) groove was a mean of 6 mm anterior and 25 mm medial to the MEAC, nearly parallel to the petrous ridge. The main axis of the IAC projected to the root of the zygoma in all cases. The internal auditory canal (IAC) porus was found 5.5 mm lateral and 4.5 mm deep to the lateral aspect of the trigeminal impression along the petrous ridge (mean measurement values). A projection from this point to the middle aspect of the root of the zygoma, being posterior to the GSPN groove, could estimate the orientation of the IAC.

CONCLUSIONS

In middle fossa approaches, the external acoustic canal is a reliable reference before skin incision, whereas the zygomatic root becomes important after the skin incision. Deep structures can be related to these 2 anatomical structures. An easy method to predict the location of the IAC in surgery is described. Careful study of the preoperative imaging is essential to adapt this knowledge to the individual anatomy of the patient.

Full access

Juan C. Fernandez-Miranda, Paul A. Gardner, Milton M. Rastelli Jr., Maria Peris-Celda, Maria Koutourousiou, David Peace, Carl H. Snyderman and Albert L. Rhoton Jr.

Object

The object of this paper was to describe the surgical anatomy and technical nuances of the endonasal transcavernous posterior clinoidectomy approach with interdural pituitary transposition and to report the clinical outcome of this technical modification.

Methods

The surgical anatomy of the proposed approach was studied in 10 colored silicon-injected anatomical specimens. The medical records of 12 patients that underwent removal of the posterior clinoid(s) with this technique were reviewed.

Results

The natural anatomical corridor provided by the cavernous sinus is used to get access to the posterior clinoid by mobilizing the pituitary gland in an interdural fashion. The medial wall of the cavernous sinus is preserved intact and attached to the gland during its medial and superior mobilization. This provides protection to the gland, allowing for preservation of its venous drainage pathways. The inferior hypophyseal artery is transected to facilitate the manipulation of the medial wall of the cavernous sinus and pituitary gland. This approach was successfully performed in all patients, including 6 with chordomas, 5 with petroclival meningiomas, and 1 with an epidermoid tumor. No patient in this series had neurovascular injury related to the posterior clinoidectomy. There were no instances of permanent hypopituitarism or diabetes insipidus.

Conclusions

The authors introduce a surgical variant of the endoscopic endonasal posterior clinoidectomy approach that does not require intradural pituitary transposition and is more effective than the purely extradural approach. The endoscopic endonasal transcavernous approach facilitates the removal of prominent posterior clinoids increasing the working space at the lateral recess of the interpeduncular cistern, while preserving the pituitary function.

Restricted access

Maria Peris-Celda, Soliman Oushy, Avital Perry, Christopher S. Graffeo, Lucas P. Carlstrom, Richard S. Zimmerman, Fredric B. Meyer, Bruce E. Pollock and Michael J. Link

OBJECTIVE

Geniculate neuralgia (GN) is an uncommon craniofacial pain syndrome attributable to nervus intermedius (NI) dysfunction. Diagnosis and treatment can be challenging, due to the complex nature of ear sensory innervation, resulting in clinical overlap with trigeminal neuralgia (TN) and glossopharyngeal neuralgia (GPN).

METHODS

A retrospective review of a prospective neurosurgical database at our institution was performed, 2000–2017, with a corresponding systematic literature review. Pain outcomes were dichotomized as unfavorable for unchanged/worsened symptoms versus favorable if improved/resolved. Eight formalin-fixed brains were examined to describe NI at the brainstem.

RESULTS

Eleven patients were surgically treated for GN—9 primary, 2 reoperations. The median age was 48, 7 patients were female, and the median follow-up was 11 months (range 3–143). Seven had ≥ 2 probable cranial neuralgias. NI was sectioned in 9 and treated via microvascular decompression (MVD) in 2. Five patients underwent simultaneous treatment for TN (4 MVD; 1 rhizotomy) and 5 for GPN (3 MVD; 2 rhizotomy). Eleven reported symptomatic improvement (100%); 8 initially reported complete resolution (73%). Pain outcomes at last contact were favorable in 8 (73%)—all among the 9 primary operations (89% vs 0%, p = 0.054). Six prior series reported outcomes in 111 patients.

CONCLUSIONS

GN is rare, and diagnosis is confounded by symptomatic overlap with TN/GPN. Directed treatment of all possible neuralgias improved pain control in almost all primary operations. Repeat surgery seems a risk factor for an unfavorable outcome. NI is adherent to superomedial VIII at the brainstem; the intermediate/cisternal portion is optimal for visualization and sectioning.