Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Manu Goyal x
Clear All Modify Search
Restricted access

Kamlesh B. Patel, Cihat Eldeniz, Gary B. Skolnick, Udayabhanu Jammalamadaka, Paul K. Commean, Manu S. Goyal, Matthew D. Smyth and Hongyu An

OBJECTIVE

There is an unmet need to perform imaging in young children and obtain CT-equivalent cranial bone images without subjecting the patients to radiation. In this study, the authors propose using a high-resolution fast low-angle shot golden-angle 3D stack-of-stars radial volumetric interpolated breath-hold examination (GA-VIBE) MRI sequence that is intrinsically robust to motion and has enhanced bone versus soft-tissue contrast.

METHODS

Patients younger than 11 years of age, who underwent clinical head CT scanning for craniosynostosis or other cranial malformations, were eligible for the study. 3D reconstructed images created from the GA-VIBE MRI sequence and the gold-standard CT scan were randomized and presented to 3 blinded reviewers. For all image sets, each reviewer noted the presence or absence of the 6 primary cranial sutures and recorded on 5-point Likert scales whether they recommended a second scan be performed.

RESULTS

Eleven patients (median age 1.8 years) underwent MRI after clinical head CT scanning was performed. Five of the 11 patients were sedated. Three clinicians reviewed the images, and there were no cases, either with CT scans or MR images, in which a reviewer agreed a repeat scan was required for diagnosis or surgical planning. The reviewers reported clear imaging of the regions of interest on 99% of the CT reviews and 96% of the MRI reviews. With CT as the standard, the sensitivity and specificity of the GA-VIBE MRI sequence to detect suture closure were 97% and 96%, respectively (n = 198 sutures read).

CONCLUSIONS

The 3D reconstructed images using the GA-VIBE sequence in comparison to the CT scans created clinically acceptable cranial images capable of detecting cranial sutures. Future directions include reducing the scan time, improving motion correction, and automating postprocessing for clinical utility.

Restricted access

Jordan I. Gewirtz, Alex Skidmore, Matthew D. Smyth, David D. Limbrick Jr., Manu Goyal, Joshua S. Shimony, Robert C. McKinstry, Mari L. Groves and Jennifer M. Strahle

OBJECTIVE

The immediate and long-term risk of anesthesia in the pediatric population is controversial. Traditional spine MRI protocols require the patient to remain still during the examination, and in young children this frequently results in the need for sedation administration. The authors’ goal was to develop an abbreviated spine MRI protocol to reduce sedation administration in young patients undergoing spine MRI.

METHODS

After IRB approval, the medical records of all pediatric patients who underwent a fast spine MRI protocol between 2017 and 2019 were reviewed. The protocol consisted of T2-weighted half-Fourier acquisition single-shot turbo spin echo, T1-weighted turbo spin echo, and T2-weighted STIR sequences acquired in the sagittal plane. The total acquisition time was 2 minutes with no single sequence acquisition longer than 60 seconds. Interpretability of the scans was assessed in accordance with the radiology report in conjunction with the neurosurgeon’s clinical notes.

RESULTS

A total of 47 fast spine MRI sessions were performed in 45 patients. The median age at the time of the MRI was 2.4 years (25th–75th quartile, 1.1–4.3 years; range 0.16–18.58 years). The most common indication for imaging was to rule out or follow a known syrinx (n = 30), followed by the need to rule out or follow known spinal dysraphism (n = 22). There were no uninterpretable or unusable scans. Eight of 47 scans were noted to have moderate motion artifact limitations with respect to the quality of the scan. Seven patients underwent a subsequent MRI with a sedated standard spine protocol within 1 year from the fast scan, which confirmed the findings on the fast MRI protocol with no new findings identified.

CONCLUSIONS

The authors report the first pediatric series of a fast spine MRI protocol for use in young patients. The protocol does not require sedation and is able to identify and monitor syrinx, spinal dysraphism, and potentially other intraspinal anomalies.