Search Results

You are looking at 1 - 10 of 13 items for

  • Author or Editor: Manabu Minami x
Clear All Modify Search
Restricted access

Yoshihisa Kotani, Kuniyoshi Abumi, Manabu Ito and Akio Minami

Object. The authors introduce a unique computer-assisted cervical pedicle screw (CPS) insertion technique used in conjunction with specially modified original pedicle screw insertion instruments. The accuracy of screw placement as well as surgery-related outcome and complication rates were compared between two groups of patients: those in whom a computer-assisted and those in whom a conventional manual insertion technique was used.

Methods. The screw insertion guiding system consisted of a modified awl, probe, tap and a screwdriver specially designed for a computer-assisted CPS insertion. Using this system, real-time instrument/screw tip information was three dimensionally identified in each step of screw insertion. Seventeen patients underwent CPS fixation in which a computer-assisted surgical navigation system was used. The cervical disorders consisted of spondylotic myelopathy with segmental instability or kyphosis, metastatic spinal tumor, rheumatoid spine, and postlaminectomy kyphosis. The rate of pedicle wall perforation was significantly lower in the computer-assisted group than that in the other group (1.2 and 6.7%, respectively; p < 0.05). The screw trajectory in the horizontal plane was significantly closer to the anatomical pedicle axis in the computer-assisted group compared with the manual insertion group (p < 0.05). This factor significantly reduced the incidence of screw perforation laterally. Complications such as neural damage or vascular injury were not demonstrated in the computer-assisted group (compared with 2% in the manual insertion treatment group). The overall surgery-related outcome was satisfactory.

Conclusions. In contrast to the previously reported computer-assisted technique, our CPS insertion technique provides real-time three-dimensional instrument/screw tip information. This serves as a powerful tool for safe and accurate pedicle screw placement in the cervical spine.

Restricted access

Hideki Sudo, Kuniyoshi Abumi, Manabu Ito, Yoshihisa Kotani and Akio Minami

✓ The sublaminar wiring procedure has been commonly used for stabilizing the atlantoaxial complex. Multistrand braided cables were introduced in the early 1990s. In previous biomechanical studies these cables were demonstrated to be superior to monofilament wires in terms of their flexibility, mechanical strength, and fatigue-related characteristics. To the authors' knowledge, they are the first to describe clinically the occurrence of delayed spinal cord compression resulting from multistrand cables after the completion of rigid spinal arthrodesis in the upper cervical spine.

Three patients underwent posterior atlantoaxial fusion in which two sublaminar multistrand cables were placed. Between 15 and 48 months postoperatively, they suffered from upper- and lower-extremity numbness as well as gait disturbance. Plain radiography and computerized tomography myelography revealed spinal cord compression caused by the sublaminar cables, although fusion was complete and physiological alignment was maintained at the fused segment. The radiographs obtained immediately after surgery demonstrated that the initial cable placement had been properly performed. The shape of the cable at the initial surgery was oval and then gradually became circular. The anterior arc of the circular shape of the cable in fact led to the spinal cord compression.

Considering the mechanism of this late complication, a cable tends to spring open because of its high flexibility and becomes circular shaped even after the complete arthrodesis. When applying multistrand cables for intersegmental fixation at the atlantoaxial complex, delayed complications related to bowing of the cables is possible.

Restricted access

Ryo Kanematsu, Junya Hanakita, Toshiyuki Takahashi, Yosuke Tomita and Manabu Minami

OBJECTIVE

Surgical management of thoracic ossification of the posterior longitudinal ligament (OPLL) remains challenging because of the anatomical complexity of the thoracic spine and the fragility of the thoracic spinal cord. Several surgical approaches have been described, but it remains unclear which of these is the most effective. The present study describes the microsurgical removal of OPLL in the middle thoracic level via the transthoracic anterolateral approach without spinal fusion, including the surgical outcome and operative tips.

METHODS

Between 2002 and 2017, a total of 8 patients with thoracic myelopathy due to OPLL were surgically treated via the transthoracic anterolateral approach without spinal fusion. The surgical techniques are described in detail. Clinical outcome, surgical complications, and the pre- and postoperative thoracic kyphotic angle were assessed.

RESULTS

The mean patient age at the time of surgery was 55 years (range 47–77 years). There were 5 women and 3 men. The surgically treated levels were within T3–9. The clinical symptoms and Japanese Orthopaedic Association (JOA) score improved postoperatively in 7 cases, but did not change in 1 case. The mean JOA score increased from 6.4 preoperatively to 7.5 postoperatively (recovery rate 26%). Intraoperative CSF leakage occurred in 4 cases, and was successfully treated with fibrin glue sealing and spinal drainage. The mean follow-up period was 82.6 months (range 15.3–169 months). None of the patients had deterioration of the thoracic kyphotic angle.

CONCLUSIONS

Anterior decompression is the logical and ideal procedure to treat thoracic myelopathy caused by OPLL on the concave side of the spinal cord; however, this procedure is technically demanding. Microsurgery via the transthoracic anterolateral approach enables direct visualization of the thoracic ventral ossified lesion. The use of microscopic procedures might negate the need for bone grafting or spinal instrumentation.

Restricted access

Hideki Sudo, Itaru Oda, Kuniyoshi Abumi, Manabu Ito, Yoshihisa Kotani, Yoshihiro Hojo and Akio Minami

Object. Posterior lumbar interbody fusion (PLIF) was developed to overcome the limitations of posterolateral fusion in correcting spinal deformity and maintaining lumbar lordosis. In this study the authors compare the biomechanical effects of three different posterior reconstructions on the adjacent motion segment.

Methods. Ten calf spinal (L2—S1) specimens underwent nondestructive flexion—extension testing (± 6 Nm). The specimens were destabilized at the L5—S1 levels after intact testing. This was followed by pedicle screw fixation with and without interbody cages as follows: 1) with straight rods (“aligned” posterolateral fusion); 2) with kyphotically prebent rods (“kyphotic” posterolateral fusion); and 3) with interbody cages combined with straight rods (“aligned” PLIF/posterolateral fusion). The range of motion (ROM) of the operative segments, the intradiscal pressure (IDP), and longitudinal lamina strain in the superior adjacent segment (L4–5) were analyzed.

The ROM associated with aligned PLIF/posterolateral fusion-treated specimens was significantly less than both the aligned and kyphotic posterolateral fusion-treated procedures in both flexion and extension loading (p < 0.05). The aligned PLIF/posterolateral fusion was associated with greater IDP and the lamina strain compared with the aligned and kyphotic posterolateral fusion groups in flexion loading. Under extension loading, greater IDP and lamina strain were present in the kyphotic posterolateral fusion group than in the aligned posterolateral fusion group. The highest IDP and lamina strain were shown in the aligned PLIF/posterolateral fusion group.

Conclusions. Compared with kyphotic posterolateral fusion, PLIF may lead to even higher load at the superior adjacent level because of the increased stiffness of the fixed segments even if local kyphosis is corrected by PLIF.

Restricted access

Yoshihisa Kotani, Manabu Ito, Kuniyoshi Abumi, Keigo Yasui and Akio Minami

The authors describe a case of a 52-year-old woman in whom tetraplegia developed with neurological respiratory failure due to POEMS syndrome associated with a solitary sacral plasmacytoma. Resection was finally performed after her condition proved resistant to radiation and chemotherapy. The patient showed a dramatic recovery and was ambulatory without tumor recurrence after 5 years and 6 months of follow-up. To the authors' knowledge, there are only 3 reported cases in the literature of bilateral phrenic nerve palsy leading to respiratory failure treated by chemotherapy. This is the first report describing neurological recovery after surgery for pentaplegia due to POEMS syndrome associated with solitary sacral plasmacytoma.

Restricted access

Manabu Ito, Yoshihisa Kotani, Yoshihiro Hojo, Kuniyoshi Abumi, Tsuyoshi Kadosawa and Akio Minami

Object

The aim of this study was to evaluate the degree of bone ingrowth and bonding stiffness at the surface of hydroxyapatite ceramic (HAC) spacers with different porosities in an animal model and to discuss the ideal porous characteristics of these spacers for anterior spinal reconstruction.

Methods

Twenty-one adult sheep (age 1–2 years, mean weight 70 kg) were used in this experiment. Surgery consisted of anterior lumbar interbody fusion at L2–3 and L4–5, insertion of an HAC spacer (10 × 13 × 24 mm) with three different porosities (0, 3, and 15%), and single-rod anterior instrumentation. At 4 and 6 months postoperatively, the lumbar spines were harvested. Bonding conditions at the bone–HAC spacer interface were evaluated using neuroimages and biomechanically. A histological evaluation was also conducted to examine the state of bone ingrowth at the surface of the HAC spacer.

Biomechanical testing showed that the bonding strength of HAC at 6 months postoperatively was 0.047 MPa in 0% porosity spacers, 0.39 MPa in 3%, and 0.49 MPa in 15% porosity spacers. The histological study showed that there was a soft-tissue layer at the surface of the HAC spacer with 0% porosity. Direct bonding was observed between bone and spacers with 3 or 15% porosity. Micro–computed tomography scans showed direct bonding between the bone and HAC with 3 or 15% porosity. No direct bonding was observed in HAC with 0% porosity.

Conclusions

Dense (0%) HAC anterior vertebral spacers did not achieve direct bonding to the bone in the sheep model. The HAC vertebral spacers with 3 or 15% porosity showed proof of direct bonding to the bone at 6 months postoperatively. The higher porosity HAC spacer showed better bonding stiffness to the bone.

Restricted access

Keita Kuraishi, Junya Hanakita, Toshiyuki Takahashi, Manabu Minami, Masanao Mori and Mizuki Watanabe

The authors report on an 81-year-old woman whose condition deteriorated 2 months after undergoing osteoplastic laminoplasty with placement of hydroxyapatite spacers. Magnetic resonance imaging showed postlaminectomy scar formation compressing the cervical spinal cord. The patient underwent laminectomy and removal of remarkably thick epidural scar tissue, which resulted in resolution of her symptoms. Histological diagnosis of the scar was fibrous granulation tissue with foreign body granuloma, characterized by multinucleated giant cells and marked increases of capillary vessels, fibroblasts, and collagen fibers. This case of symptomatic postlaminectomy scar formation after osteoplastic laminoplasty suggests that osteoplastic laminoplasty cannot always prevent laminectomy membrane formation.

Restricted access

Hideki Sudo, Itaru Oda, Kuniyoshi Abumi, Manabu Ito, Yoshihisa Kotani and Akio Minami

Object

The objectives of this study were to compare the biomechanical effects of five lumbar reconstruction models on the adjacent segment and to analyze the effects of three factors: construct stiffness, sagittal alignment, and the number of fused segments.

Methods

Nondestructive flexion–extension tests were performed by applying pure moments to 10 calf spinal (L3–S1) specimens. One-segment (L5–6) or two-segment (L5–S1) posterior fusion methods were simulated: 1) one-segment posterolateral fusion (PLF); 2) one-segment PLF with interbody fusion cages (one-segment PLIF/PLF); 3) two-segment PLF; 4) two-segment PLIF/PLF; and 5) two-segment PLF in kyphosis (two-segment kyphotic PLF). The range of motion (ROM) of the reconstructed segments, intradiscal pressure (IDP), and lamina strain in the upper (L4–5) adjacent segment were analyzed.

The ROM was significantly decreased in the PLIF/PLF models compared with that in the PLF alone models after both the one- and two-segment fusions. If the number of fused segments was increased, the pressure and strains were also increased in specimens subjected to the PLIF/PLF procedure, more so than the PLF-alone procedure. In the one-segment PLIF/PLF model the authors observed a reduced IDP and lamina strain compared with those in the kyphotic two-segment PLF model despite the latter’s higher levels of initial stiffness.

Conclusions

If the number of fused levels can be reduced by using PLIF to correct local kyphosis, then this procedure may be valuable for reducing adjacent-segment degenerative changes.

Restricted access

Yuichiro Abe, Manabu Ito, Kuniyoshi Abumi, Yoshihisa Kotani, Hideki Sudo and Akio Minami

Object

Use of computer-assisted spine surgery (CASS) technologies, such as navigation systems, to improve the accuracy of pedicle screw (PS) placement is increasingly popular. Despite of their benefits, previous CASS systems are too expensive to be ubiquitously employed, and more affordable and portable systems are desirable. The aim of this study was to introduce a novel and affordable computer-assisted technique that 3-dimensionally visualizes anatomical features of the pedicles and assists in PS insertion. The authors have termed this the 3D-visual guidance technique for inserting pedicle screws (3D-VG TIPS).

Methods

The 3D-VG technique for placing PSs requires only a consumer-class computer with an inexpensive 3D DICOM viewer; other special equipment is unnecessary. Preoperative CT data of the spine were collected for each patient using the 3D-VG TIPS. In this technique, the anatomical axis of each pedicle can be analyzed by volume-rendered 3D models, as with existing navigation systems, and both the ideal entry point and the trajectory of each PS can be visualized on the surface of 3D-rendered images. Intraoperative guidance slides are made from these images and displayed on a TV monitor in the operating room. The surgeon can insert PSs according to these guidance slides. The authors enrolled 30 patients with adolescent idiopathic scoliosis (AIS) who underwent posterior fusion with segmental screw fixation for validation of this technique.

Results

The novel technique allowed surgeons, from office or home, to evaluate the precise anatomy of each pedicle and the risks of screw misplacement, and to perform 3D preoperative planning for screw placement on their own computer. Looking at both 3D guidance images on a TV monitor and the bony structures of the posterior elements in each patient in the operating theater, surgeons were able to determine the best entry point for each PS with ease and confidence. Using the current technique, the screw malposition rate was 4.5% in the thoracic region in corrective surgery for AIS.

Conclusions

The authors found that 3D-VG TIPS worked on a consumer-class computer and easily visualized the ideal entry point and trajectory of PSs in any operating theater without costly special equipment. This new technique is suitable for preoperative planning and intraoperative guidance when performing reconstructive surgery with PSs.

Restricted access

Hideki Sudo, Manabu Ito, Kuniyoshi Abumi, Yoshihisa Kotani, Tatsuto Takeuchi, Keigo Yasui and Akio Minami

Object

As increasing numbers of patients receive long-term hemodialysis, the number of reports regarding hemodialysis-related cervical spine disorders has also increased. However, there have been few reports summarizing the surgical results in patients with these disorders. The objective of this study was to evaluate the long-term follow up and clinical results after surgical treatment of cervical disorders in patients undergoing hemodialysis.

Methods

Seventeen patients in whom surgery was performed for cervical spine disorders while they received long-term hemodialysis therapy were enrolled in this study. Of these, 15 underwent follow-up review for more than 3 years after surgery, and these represent the study population. The remaining two patients died of postoperative sepsis. The average follow-up period was 120 months. Five patients without spinal instability underwent spinal cord decompression in which bilateral open-door laminoplasty was performed. Ten patients with destructive spondyloarthropathy (DSA) underwent reconstructive surgery involving pedicle screw (PS) fixation. In eight patients in whom posterior instrumentation was placed, anterior strut bone grafting was performed with autologous iliac bone to treat anterior-column destruction. Marked neurological recovery was obtained in all patients after the initial surgery. In the mobile segments adjacent to the site of previous spinal fusion, the authors observed progressive destructive changes with significant instability in four patients (40%) who underwent circumferential spinal fusion. No patients required a second surgery after laminoplasty for spinal canal stenosis without DSA changes.

Conclusions

Cervical PS-assisted reconstruction provided an excellent fusion rate and good spinal alignment. During the long-term follow-up period, however, some cases required extension of the spinal fusion due to the destructive changes in the adjacent vertebral levels. Guidelines or recommendations to overcome these problems should be produced to further increase the survival rates of patients undergoing hemodialysis.