Search Results

You are looking at 1 - 8 of 8 items for

  • Author or Editor: Makoto Oishi x
Clear All Modify Search
Restricted access

Masafumi Fukuda, Makoto Oishi, Tetsuya Hiraishi, Manabu Natsumeda and Yukihiko Fujii

Object

The authors retrospectively analyzed various clinicopathological factors to determine which are related to regrowth during a long-term follow-up period in patients who underwent incomplete vestibular schwannoma (VS) resection.

Methods

This study involved 74 patients (25 men and 49 women) in whom a VS was treated surgically via the lateral suboccipital approach, and who had postoperative follow-up periods exceeding 5 years. The mean follow-up was 104.1 months (range 60–241 months), and the mean patient age at surgery was 48.1 years (range 19–75 years). The tumors ranged in size from 0 mm (localized within the internal auditory canal) to 56 mm (28.3 ± 12.2 mm [mean ± SD]).

Results

Gross-total resection (GTR) was performed in 41 (55%) of the 74 patients; subtotal resection ([STR]; 90–99%) in 25 (34%); and partial resection ([PR]; < 90%) in 8 (11%). Regrowth rates in the GTR, STR, and PR groups were 2.4% (1 of 41 cases), 52% (13 of 25), and 62.5% (5 of 8), respectively, and the times to regrowth ranged from 6 to 76 months (median 31.9 months). The regrowth-free survival curves differed significantly between the complete (GTR) and incomplete (STR and PR) resection groups. Eighteen (54.5%) of the 33 patients who underwent incomplete resection showed evidence of regrowth during follow-up. Univariate and multivariate analyses of various factors revealed that both the thickness of the residual tumor, based on MR imaging after surgery, and the MIB-1 index were positively related to residual tumor regrowth. The receiver operating characteristic curves, plotted for both the thickness of the residual tumor and the MIB-1 index, identified the optimal cutoff points for these values as 7.4 mm (sensitivity 83.3%, specificity 86.7%) and 1.6 (sensitivity 83.3%, specificity 66.7%), respectively.

Conclusions

Greater residual tumor thickness, based on MR imaging after the initial surgery, and a higher MIB-1 index are both important factors related to postoperative tumor regrowth in patients who have undergone incomplete VS resection. These patients require frequent neuroimaging investigation during follow-up to assure early detection of tumor regrowth.

Restricted access

Masafumi Fukuda, Makoto Oishi, Tetsuya Hiraishi, Akihiko Saito and Yukihiko Fujii

Object

The purpose of this study was to determine whether monitoring of pharyngeal motor evoked potentials (PhMEPs) elicited by transcranial electrical stimulation during skull base tumor surgery might be useful for predicting postoperative swallowing deterioration.

Methods

The authors analyzed PhMEPs in 21 patients during 22 surgical procedures for the treatment of skull base tumors. Corkscrew electrodes positioned at C3 or C4 and Cz were used to deliver supramaximal stimuli (220–550 V). Pharyngeal MEPs were recorded from the posterior wall of the pharynx through a modified endotracheal tube. The correlation between the final/baseline PhMEP ratio and postoperative swallowing function was examined.

Results

Postoperative swallowing function was significantly (p < 0.05), although not strongly (r = −0.47), correlated with the final/baseline PhMEP ratio. A PhMEP ratio < 50% was recorded during 4 of 22 procedures; in all 4 of these cases, the patients experienced postoperative deterioration of swallowing function. After 18 procedures, the PhMEP ratios remained > 50%; nevertheless, after 4 (22.2%) of these 18 procedures, patients showed deterioration of swallowing function.

Conclusions

Intraoperative PhMEP monitoring can be useful for predicting swallowing deterioration following skull base surgery, especially in patients with swallowing disturbances that are mainly due to reduction in the motor functions of the pharyngeal muscles.

Restricted access

Makoto Oishi, Masafumi Fukuda, Tetsuya Hiraishi, Naoki Yajima, Yosuke Sato and Yukihiko Fujii

Object

The purpose of this paper is to report on the authors' advanced presurgical interactive virtual simulation technique using a 3D computer graphics model for microvascular decompression (MVD) surgery.

Methods

The authors performed interactive virtual simulation prior to surgery in 26 patients with trigeminal neuralgia or hemifacial spasm. The 3D computer graphics models for interactive virtual simulation were composed of the brainstem, cerebellum, cranial nerves, vessels, and skull individually created by the image analysis, including segmentation, surface rendering, and data fusion for data collected by 3-T MRI and 64-row multidetector CT systems. Interactive virtual simulation was performed by employing novel computer-aided design software with manipulation of a haptic device to imitate the surgical procedures of bone drilling and retraction of the cerebellum. The findings were compared with intraoperative findings.

Results

In all patients, interactive virtual simulation provided detailed and realistic surgical perspectives, of sufficient quality, representing the lateral suboccipital route. The causes of trigeminal neuralgia or hemifacial spasm determined by observing 3D computer graphics models were concordant with those identified intraoperatively in 25 (96%) of 26 patients, which was a significantly higher rate than the 73% concordance rate (concordance in 19 of 26 patients) obtained by review of 2D images only (p < 0.05). Surgeons evaluated interactive virtual simulation as having “prominent” utility for carrying out the entire surgical procedure in 50% of cases. It was evaluated as moderately useful or “supportive” in the other 50% of cases. There were no cases in which it was evaluated as having no utility. The utilities of interactive virtual simulation were associated with atypical or complex forms of neurovascular compression and structural restrictions in the surgical window. Finally, MVD procedures were performed as simulated in 23 (88%) of the 26 patients .

Conclusions

Our interactive virtual simulation using a 3D computer graphics model provided a realistic environment for performing virtual simulations prior to MVD surgery and enabled us to ascertain complex microsurgical anatomy.

Restricted access

Makoto Oishi, Shigeki Kameyama, Nobuhito Morota, Masaru Tomikawa, Manabu Wachi, Akiyoshi Kakita, Hitoshi Takahashi and Ryuichi Tanaka

✓ The authors report successful presurgical identification of an epileptic focus in the fusiform gyrus by using ictal magnetoencephalography (MEG), which was performed with the aid of an advanced whole-brain neuromagnetometer. A 22-year-old man had suffered from medically refractory complex partial seizures since he was 10 years of age. Seizure symptoms, magnetic resonance imaging, and ictal single-photon emission computerized tomography examinations indicated right temporal lobe epilepsy; however, ictal electroencephalography, including sphenoidal recordings, failed even to lateralize the seizure focus. The MEG studies revealed that equivalent current dipoles of interictal activities were scattered bilaterally around the medial temporal structures, but those of ictal onset and postictal activities formed a cluster in the left fusiform gyrus. After confirmation of each ictal and interictal MEG finding by using long-term electrocorticography recordings, focal cortical resection of the left inferior temporal and fusiform gyri was performed. The histopathological diagnosis was cortical dysplasia, and the patient has achieved a good seizure outcome, now 15 months after the operation. Ictal and also postictal MEG may be more specific than interictal MEG for identifying the ictal onset zone.

Restricted access

Makoto Oishi, Masafumi Fukuda, Naoki Yajima, Kenzo Yoshida, Machiko Takahashi, Tetsuya Hiraishi, Tetsuro Takao, Akihiko Saito and Yukihiko Fujii

Object

In this paper, the authors' goal was to report their novel presurgical simulation method applying interactive virtual simulation (IVS) using 3D computer graphics (CG) data and microscopic observation of color-printed plaster models based on these CG data in surgery for skull base and deep tumors.

Methods

For 25 operations in 23 patients with skull base or deep intracranial tumors (meningiomas, schwannomas, epidermoid tumors, chordomas, and others), the authors carried out presurgical simulation based on 3D CG data created by image analysis for radiological data. Interactive virtual simulation was performed by modifying the 3D CG data to imitate various surgical procedures, such as bone drilling, brain retraction, and tumor removal, with manipulation of a haptic device. The authors also produced color-printed plaster models of modified 3D CG data by a selective laser sintering method and observed them under the operative microscope.

Results

In all patients, IVS provided detailed and realistic surgical perspectives of sufficient quality, thereby allowing surgeons to determine an appropriate and feasible surgical approach. Surgeons agreed that in 44% of the 25 operations IVS showed high utility (as indicated by a rating of “prominent”) in comprehending 3D microsurgical anatomies for which reconstruction using only 2D images was complicated. Microscopic observation of color-printed plaster models in 12 patients provided further utility in confirming realistic surgical anatomies.

Conclusions

The authors' presurgical simulation method applying advanced 3D imaging and modeling techniques provided a realistic environment for practicing microsurgical procedures virtually and enabled the authors to ascertain complex microsurgical anatomy, to determine the optimal surgical strategies, and also to efficiently educate neurosurgical trainees, especially during surgery for skull base and deep tumors.

Restricted access

Koji Iida, Hiroshi Otsubo, Yuuri Matsumoto, Ayako Ochi, Makoto Oishi, Stephanie Holowka, Elizabeth Pang, Irene Elliott, Shelly K. Weiss, Sylvester H. Chuang, O. Carter Snead III and James T. Rutka

Object

The authors sought to validate magnetoencephalography spike sources (MEGSSs) in neuronavigation during epilepsy surgery in pediatric patients.

Methods

The distributions of MEGSSs in 16 children were defined and classified as clusters (Class I), greater than or equal to 20 MEGSSs with 1 cm or less between MEGSSs; small clusters (Class II), 6 to 19 with 1 cm or less between; and scatters (Class III), less than 6 or greater than 1 cm between spike sources. Using neuronavigation, the MEGSSs were correlated to epileptic zones from intra- and extraoperative electrocorticography (ECoG), surgical procedures, disease entities, and seizure outcomes.

Thirteen patients underwent MEGSSs: nine had clusters; two had small clusters, one with and one without clusters; and three had scatters alone. All 13 had scatters. Clusters localized within and extended from areas of cortical dysplasia and at margins of tumors or cystic lesions. All clusters were colocalized to ECoG-defined epileptic zones. Four of six patients with clusters and/or small clusters underwent complete excisions, and two underwent partial excision with or without multiple subpial transections. In the three patients with scatters alone, ECoG revealed epileptic zones buried within MEGSS areas; these regions of scatters were completely excised and treated with multiple subpial transections. Coexisting scatters were left untreated in nine of 10 patients. Postoperatively, nine of 13 patients were seizure free; the four patients with residual seizures had clusters in unresected eloquent cortex. Three patients in whom no MEGSSs were demonstrated underwent lesionectomies and were seizure free.

Conclusions

Magnetoencephalography spike source clusters indicate an epileptic zone requiring complete excision. Coexisting scatters remote from clusters are nonepileptogenic and do not require excision. Scatters alone, however, should be examined by ECoG; an epileptic zone may exist within these distributions.

Restricted access

Koji Iida, Hiroshi Otsubo, Yuuri Matsumoto, Ayako Ochi, Makoto Oishi, Stephanie Holowka, Elizabeth Pang, Irene Elliott, Shelly K. Weiss, Sylvester H. Chuang, O. Carter Snead III and James T. Rutka

Object. The authors sought to validate magnetoencephalography spike sources (MEGSSs) in neuronavigation during epilepsy surgery in pediatric patients.

Methods. The distributions of MEGSSs in 16 children were defined and classified as clusters (Class I), greater than or equal to 20 MEGSSs with 1 cm or less between MEGSSs; small clusters (Class II), 6 to 19 with 1 cm or less between; and scatters (Class III), less than 6 or greater than 1 cm between spike sources. Using neuronavigation, the MEGSSs were correlated to epileptic zones from intra- and extraoperative electrocorticography (ECoG), surgical procedures, disease entities, and seizure outcomes.

Thirteen patients underwent MEGSSs: nine had clusters; two had small clusters, one with and one without clusters; and three had scatters alone. All 13 had scatters. Clusters localized within and extended from areas of cortical dysplasia and at margins of tumors or cystic lesions. All clusters were colocalized to ECoG-defined epileptic zones. Four of six patients with clusters and/or small clusters underwent complete excisions, and two underwent partial excision with or without multiple subpial transections. In the three patients with scatters alone, ECoG revealed epileptic zones buried within MEGSS areas; these regions of scatters were completely excised and treated with multiple subpial transections. Coexisting scatters were left untreated in nine of 10 patients. Postoperatively, nine of 13 patients were seizure free; the four patients with residual seizures had clusters in unresected eloquent cortex. Three patients in whom no MEGSSs were demonstrated underwent lesionectomies and were seizure free.

Conclusions. Magnetoencephalography spike source clusters indicate an epileptic zone requiring complete excision. Coexisting scatters remote from clusters are nonepileptogenic and do not require excision. Scatters alone, however, should be examined by ECoG; an epileptic zone may exist within these distributions.

Restricted access

Makoto Oishi, Hiroshi Otsubo, Koji Iida, Yasuhiro Suyama, Ayako Ochi, Shelly K. Weiss, Jing Xiang, William Gaetz, Douglas Cheyne, Sylvester H. Chuang, James T. Rutka and O. Carter Snead III

Object

Magnetoencephalography (MEG) has been used for the preoperative localization of epileptic equivalent current dipoles (ECDs) in neocortical epilepsy. Spatial filtering can be applied to MEG data by means of synthetic aperture magnetometry (SAM), and SAM virtual sensor analysis can be used to estimate the strength and temporal course of the epileptic source in the region of interest. To evaluate the clinical usefulness of this approach, the authors compare the results of SAM virtual sensor analysis to the results of ECD analysis, subdural electroencephalography (EEG) findings, and surgical outcomes in pediatric patients with neocortical epilepsy.

Methods

Ten pediatric patients underwent MEG, invasive subdural EEG, and cortical resection for neocortical epilepsy. The authors compared the morphological characteristics, quantity, location, and distribution of the epileptiform discharges assessed using SAM and ECD analysis, and subdural EEG findings (interictal discharges and ictal onset zones).

In nine patients, MEG revealed clustered ECDs. The region exhibiting the maximum percentage (≥ 70%) of spikes/sharp waves on SAM was colocalized to clustered ECDs in seven patients. In six patients, SAM demonstrated focal spikes; in two, diffuse spikes; and in two others, focal rhythmic sharp waves. These epileptiform discharges were similar to those recorded on subdural EEG. In nine patients, concordant regions containing the maximum percentage of spikes/sharp waves were revealed by SAM and subdural EEG data. The region of the maximum percentage of spikes/sharp waves as demonstrated by SAM was colocalized to the ictal onset zone identified by subdural EEG findings in seven patients and partially colocalized in two.

Conclusions

The SAM virtual sensor analysis revealed morphological characteristics, location, and distribution of epileptiform discharges similar to those shown by subdural EEG recordings. By using SAM it is possible to predict intracerebral interictal epileptiform discharges in the region of interest from noninvasively collected preoperative MEG data. The maximum interictal discharge zone identified by SAM virtual sensors correlated to clustered ECDs and the ictal onset zone on subdural EEG findings. Complementary analyses of ECDs and SAM on three-dimensional MR images can improve delineation of epileptogenic zones and lesions in neocortical epilepsy.