Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Mahmud Mossa-Basha x
Clear All Modify Search
Restricted access

Vance T. Lehman, Waleed Brinjikji, Mahmud Mossa-Basha, Giuseppe Lanzino, Alejandro A. Rabinstein, David F. Kallmes and John Huston III

Intracranial aneurysms are heterogeneous in histopathology and imaging appearance. The biological behavior of different types of aneurysms is now known to depend on the structure and physiology of the aneurysm wall itself in addition to intraluminal flow and other luminal features. Aneurysm wall structure and imaging markers of physiology such as aneurysm wall enhancement have been assessed in many prior investigations using conventional-resolution MRI. Recently, high-resolution vessel wall imaging (HR-VWI) techniques with MRI have been introduced. Reports of findings on high-resolution imaging have already emerged for many types of aneurysms demonstrating detailed characterization of wall enhancement, thickness, and components, but many questions remain unexplored. This review discusses the key HR-VWI literature to date. Aneurysm wall findings on conventional-resolution MRI are also discussed as these may help one understand the potential utility and findings on HR-VWI for various aneurysm types. The authors have illustrated these points with several examples demonstrating both features already described in the literature and novel cases demonstrating the potential for future clinical and research applications.

Restricted access

Mahmud Mossa-Basha, Thien J. Huynh, Daniel S. Hippe, Peter Fata, Ryan P. Morton and Michael R. Levitt

OBJECTIVE

The aim of this paper was to evaluate the association between intracranial vessel wall MRI enhancement characteristics and the development of angiographic vasospasm in endovascularly treated aneurysm patients.

METHODS

Consecutive cases of both ruptured and unruptured intracranial aneurysms that were treated endovascularly, followed by intracranial vessel wall MRI in the immediate postoperative period, were included. Two raters blinded to clinical data and follow-up imaging independently evaluated for the presence, pattern, and intensity of wall enhancement. Development of angiographic vasospasm was independently evaluated. Delayed cerebral ischemia; cerebral infarct; procedural details; and presence and grade of subarachnoid, parenchymal, and intraventricular hemorrhage were evaluated. Statistical associations were determined on a per–vessel segment and per-patient basis.

RESULTS

Twenty-nine patients with 30 treated aneurysms (8 unruptured and 22 ruptured) were included in this study. Interobserver agreement was substantial for the presence of enhancement (κ = 0.67) and nearly perfect for distribution (κ = 0.87) and intensity (κ = 0.84) of wall enhancement. Patients with ruptured aneurysms had a significantly greater number of enhancing segments than those with unruptured aneurysms (29.9% vs 7.2%; OR 5.5, 95% CI 2.2–13.7). For ruptured cases, wall enhancement was significantly associated with subsequent angiographic vasospasm while controlling for grade of hemorrhage (adjusted OR 3.9, 95% CI 1.7–9.4). Vessel segments affected by balloon, stent, or flow-diverter use demonstrated greater enhancement than those not affected (OR 22.7, 95% CI 5.3–97.2 for ruptured; and OR 12.9, 95% CI 3.3–49.8 for unruptured).

CONCLUSIONS

Vessel wall enhancement after endovascular treatment of ruptured aneurysms is associated with subsequent angiographic vasospasm.