Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: Maciej Lesniak x
Clear All Modify Search
Full access

Sherise Ferguson and Maciej S. Lesniak

Throughout his illustrious career, Percival Bailey made numerous contributions to the fields of neurology, neuroanatomy, psychiatry, neuropathology, and, of course, neurosurgery. His expertise, his curiosity about the nervous system, and his desire to examine it from all angles were unique. With the exception of Harvey Cushing, Dr. Bailey made some of the greatest contributions in the area of neuro-oncology at the turn of the last century. In this essay the authors summarize the key episodes of Bailey's life and discuss his impact on the classification and treatment of human brain tumors.

Restricted access

Abdeljabar El Andaloussi, Yu Han and Maciej S. Lesniak

Object

Regulatory CD4+CD25+ T cells have been shown to play an important role in the regulation of the immune response. Whereas the presence of these cells has been associated with immune suppression, the lack of regulatory T (Treg) cells has been shown to induce autoimmunity. The purpose of this study was to define the role of Treg cells in tumors of the central nervous system (CNS).

Methods

The authors implanted syngeneic GL261 tumor cells in the brains or flanks of C57BL/6 mice. The resulting tumors were later removed at specific time points, and the presence of tumor-infiltrating lymphocytes was analyzed by performing flow cytometry for the presence of Treg cells. In a separate experiment, mice with GL261 tumors were treated with injections of anti-CD25 monoclonal antibody (mAb) to determine whether depletion of Treg cells may have an impact on the length of survival in mice with brain tumors.

Tumor-infiltrating lymphocytes isolated from mice with GL261 tumors were found to have a significant increase in the presence of Treg cells compared with control lymphocytes (p < 0.05). Moreover, Treg cells isolated in murine brain tumors expressed FoxP3, CTLA-4, and CD62L. Mice treated with anti-CD25 mAb lived significantly longer than tumor-bearing control animals (p < 0.05). An analysis of brains in surviving animals showed a depletion of CD4+CD25+ T cells.

Conclusions

The results of this study indicate that CD4+CD25+ Treg cells play an important role in suppressing the immune response to CNS tumors. These Treg cells may therefore represent a potentially novel target for immunotherapy of malignant gliomas.

Free access

Adam M. Sonabend, Ilya V. Ulasov, Yu Han and Maciej S. Lesniak

Adenoviruses historically have been one of the main vectors used in human gene therapy. To date, the majority of brain tumor trials of these vectors have used replication-defective viruses. The relative lack of success obtained with replication-defective vectors has prompted a search for new and improved therapies. In this context, oncolytic (conditionally replicative) adenoviruses, which selectively bind and replicate only in tumor cells, have gained increasing importance. These adenoviruses, once they are rendered conditionally replicative by transductional and transcriptional modifications, offer significant promise for patients with malignant glioma. In this review, the authors discuss the genetic approaches to adenoviral modification and their applications in the field of neurooncology.

Restricted access

Ilya V. Ulasov, Angel A. Rivera, Yu Han, David T. Curiel, Zeng B. Zhu and Maciej S. Lesniak

Object

Gene therapy protocols for malignant gliomas utilize adenoviral vectors that rely almost exclusively on the adenovirus serotype 5 (Ad5) backbone. The authors have previously shown that chimeric vectors that bind to the Ad3 receptor, or CD46, increase the transduction efficiency of malignant brain tumors. In light of the debate regarding the efficacy of CD46 compared with CD80/CD86 in binding Ad3 virions, the authors now examine the expression and transduction efficiency of Ad5/3 chimeras that bind via CD80/CD86.

Methods

The authors first analyzed CD80/CD86 expression in glioma cell lines. They then used three replication-defective vectors containing a luciferase reporter gene: Ad5/3 (containing the tail and shaft domain of Ad5 and the knob domain of Ad3); Ad3/5 (containing the tail of Ad5, shaft of Ad3, and knob of Ad5); and Ad3/3 (containing the tail of Ad5, shaft of Ad3, and knob of Ad3). These vectors were analyzed both in vitro and in vivo against malignant glioma cells. To examine further the effect of Ad5/3 fiber modification, the authors created an oncolytic vector, conditionally replicative Ad5/3 (CRAd5/3).

Results

The Ad5/3 vector showed a 10- to 100-fold enhanced transduction efficiency of malignant glioma compared with replication-defective wild-type adenovirus (reAd5) (p < 0.05). Moreover the use of Ad5/3 reduced transgene expression by more than 90% in normal human brain cells compared with reAd5. Finally, the use of CRAd5/3 inhibited tumor cell proliferation by 43% more than replication-competent wild-type virus in vitro (p < 0.05).

Conclusions

The results of this study demonstrate that the Ad5/3 vector offers superior transduction efficiency and low toxicity in the setting of brain tumors, and therefore represents a potential new approach to gene therapy for malignant gliomas.

Full access

Maciej S. Lesniak, Prakash Sampath, Francesco DiMeco, Michael P. Viglione, Betty M. Tyler, Drew M. Pardoll and Henry Brem

Object

Local delivery of cytokines has been shown to have a potent antitumor activity against a wide range of malignant brain tumors. In this study, the authors examined the efficacy of treating central nervous system (CNS) tumors by transfecting poorly immunogenic B16/F10 melanoma cells with interleukin (IL)-2, IL-4, or granulocyte-macrophage–colony stimulating factor (GM-CSF) gene, and using these cells to deliver the cytokine locally at the site of the CNS tumor. The object was to determine which cytokine would possess the greatest antitumor activity and to further elucidate its mechanism of action.

Methods

The transfected B16/F10 cells were irradiated to prevent replication and injected intracranially into C57BL/6 mice (10 mice per group) along with nonirradiated, nontransfected B16/F10 (wild-type) melanoma cells. Sixty percent of mice treated with IL-2 (p < 0.001 compared with control) and 10% treated with IL-4 (median survival = 31 days, p < 0.001 compared with control) were long term survivors (> 120 days). The median survival for animals treated with GM-CSF was 22 days with no long term survivors (p = 0.01 compared with control). Control animals that received only wild-type cells had a median survival of 18 days (range 15–20 days). Histopathological examination of brains from animals killed at different times showed minimal infiltration of tumor cells in the IL-2 group, moderate infiltration of tumor cells in the IL-4 group, and gross tumor invasion and tissue necrosis in the GM-CSF group. Animals treated with IL-2 showed a strong CD8 T cell–mediated response, whereas IL-4 evoked a prominent eosinophilic infiltrate in the area of the tumor.

Conclusions

High levels of locally expressed IL-2 rather than IL-4 or GM-CSF stimulate a strong immunological cytotoxic antitumor response that leads to significant prolongation of survival in mice challenged with B16/F10 intracranial melanoma tumor cells. Consequently, IL-2 may be a superior candidate for use in paracrine immunotherapy.

Restricted access

Winan J. Van Houdt, Yosef S. Haviv, Baogen Lu, Minghui Wang, Angel A. Rivera, Ilya V. Ulasov, Martine L. M. Lamfers, Daniel Rein, Maciej S. Lesniak, Gene P. Siegal, Clemens M. F. Dirven, David T. Curiel and Zeng B. Zhu

Object

Malignant brain tumors have been proved to be resistant to standard treatments and therefore require new therapeutic strategies. Survivin, a recently described member of the inhibitor of apoptosis protein family, is overexpressed in several human brain tumors, primarily gliomas, but is downregulated in normal tissues. The authors hypothesized that the expression of tumor-specific survivin could be exploited for treatment of gliomas by targeting the tumors with gene therapy vectors.

Methods

Following confirmation of survivin expression in glioma cell lines, an adenoviral vector containing the survivin promoter and the reporter gene luciferase was tested in established and primary glioma cells, normal astrocytic cells, and normal human brain tissues. High levels of reporter gene expression were observed in established tumor and primary tumor cell lines and low levels of expression in astrocytes and normal human brain tissue. To test oncolytic potency, the authors constructed survivin promoter–based conditionally replicative adenoviruses (CRAds), composed of survivin promoter–regulated E1 gene expression and an RGD-4C capsid modification. These CRAds could efficiently replicate within and kill a variety of established glioma tumor cells, but were inactive in a normal human liver organ culture. Finally, survivin promoter–based CRAds significantly inhibited the growth of glioma xenografts in vivo.

Conclusions

Together these data indicate that the survivin promoter is a promising tumor-specific promoter for transcriptional targeting of adenovirus-based vectors and CRAds for malignant gliomas. The strategy of using survivin–CRAds may thus translate into an experimental therapeutic approach that can be used in human clinical trials.