Search Results

You are looking at 1 - 10 of 22 items for

  • Author or Editor: M. Marcel Maya x
Clear All Modify Search
Restricted access

Wouter I. Schievink and M. Marcel Maya

Headache occurs after dural puncture in about 1%–25% of children who undergo the procedure—a rate similar to that seen in adults. Persistence of post–dural puncture headache in spite of bed rest, increased fluid intake, and epidural blood patch treatment, however, is rare. The authors reviewed the medical records and imaging studies of all patients 19 years of age or younger who they evaluated between 2001 and 2010 for intracranial hypotension, and they identified 8 children who had persistent post–dural puncture headache despite maximal medical treatment and placement of epidural blood patches. A CSF leak could be demonstrated radiologically and treated surgically in 3 of these patients, and the authors report these 3 cases.

The patients were 2 girls (ages 14 and 16 years) who had undergone lumbar puncture for evaluation of headache and fever and 1 boy (age 13 years) who had undergone placement of a lumboperitoneal shunt using a Tuohy needle for treatment of pseudotumor cerebri. The boy also had undergone a laminectomy and exploration of the posterior dural sac, but no CSF leak could be identified. All 3 patients presented with new-onset orthostatic headaches, and in all 3 cases MRI demonstrated a large ventral lumbar or thoracolumbar CSF collection. Conventional myelography or digital subtraction myelography revealed a ventral dural defect at L2–3 requiring surgical repair. Through a posterior transdural approach, the dural defect was repaired using 6-0 Prolene sutures and a dural substitute. Postoperative recovery was uneventful, with complete resolution of orthostatic headache and of the ventral cerebrospinal fluid leak on MRI.

The authors conclude that persistent postdural puncture headache requiring surgical repair is rare in children. They note that the CSF leak may be located ventrally and may require conventional or digital subtraction myelography for exact localization and that transdural repair is safe and effective in eliminating the headaches.

Restricted access

Wouter I. Schievink, M. Marcel Maya and Franklin M. Moser

✓ Spontaneous intracranial hypotension due to a cerebrospinal fluid (CSF) leak in the spine is an important cause of new, daily persistent headaches. Most patients respond well to conservative treatments including epidural blood patching. Limited options for effective treatment are available for patients in whom these treatments fail. The authors treated four patients (mean age 38 years; range 26–43 years) with percutaneous placement of a fibrin sealant. All these patients presented with intractable positional headaches. The CSF leak was located in the lower cervical spine in three patients and in the lower thoracic spine in one patient. Four to 20 milliliters of fibrin sealant was injected at the site of the CSF leak. Two of the four patients became asymptomatic within days of the procedure and thus avoided surgery. There were no complications of this procedure. Percutaneous placement of a fibrin sealant is a safe, minimally invasive treatment for spontaneous spinal CSF leaks and should be considered in patients in whom conservative treatment has failed.

Restricted access

Wouter I. Schievink, M. Marcel Maya and James Tourje

Object. Spontaneous intracranial hypotension due to a spinal cerebrospinal fluid (CSF) leak is an important cause of new daily persistent headaches. Spinal neuroimaging is important in the treatment of these patients, particularly when direct repair of the CSF leak is contemplated. Retrospinal C1–2 fluid collections may be noted on spinal imaging and these are generally believed to correspond to the site of the CSF leak. The authors undertook a study to determine the significance of these C1–2 fluid collections.

Methods. The patient population consisted of a consecutive group of 25 patients (18 female and seven male) who were evaluated for surgical repair of a spontaneous spinal CSF leak. The mean age of the 18 patients was 38 years (range 13–72 years). All patients underwent computerized tomography myelography. Three patients (12%) had extensive retrospinal C1–2 fluid collections; the mean age of this woman and these two men was 41 years (range 39–43 years). The actual site of the CSF leak was located at the lower cervical spine in these patients and did not correspond to the site of the retrospinal C1–2 fluid collection.

Conclusions. A retrospinal fluid collection at the C1–2 level does not necessarily indicate the site of the CSF leak in patients with spontaneous intracranial hypotension. This is an important consideration in the treatment of these patients because therapy may be inadvertently directed at this site.

Restricted access

Wouter I. Schievink, M. Marcel Maya and Mary Riedinger

Object. Intracranial hypotension due to a spontaneous spinal cerebrospinal fluid (CSF) leak is an increasingly recognized cause of postural headaches, but reliable follow-up data are lacking. The authors undertook a study to determine the risk of a recurrent spontaneous spinal CSF leak.

Methods. The patient population consisted of a consecutive group of 18 patients who had been evaluated for consideration of surgical repair of a spontaneous spinal CSF leak. The mean age of the 15 women and three men was 38 years (range 22–55 years). The mean duration of follow up was 36 months (range 6–132 months). The total follow-up time was 654 months. A recurrent spinal CSF leak was defined on the basis of computerized tomography myelography evidence of a CSF leak in a previously visualized but unaffected spinal location. Five patients (28%) developed a recurrent spinal CSF leak; the mean age of these four women and one man was 36 years. A recurrent CSF leak developed in five (38%) of 13 patients who had undergone surgical CSF leak repair, compared with none (0%) of five patients who had been treated non-surgically (p = 0.249). The recurrent leak occurred between 10 and 77 months after the initial CSF leak, but within 2 or 3 months of successful surgical repair of the leak in all patients.

Conclusions. Recurrent spontaneous spinal CSF leaks are not rare, and the recent successful repair of such a leak at another site may be an important risk factor.

Restricted access

Wouter I. Schievink and M. Marcel Maya

Object

Spontaneous intracranial hypotension (SIH) is a significant cause of new-onset daily persistent headache. A generalized connective tissue disorder also involving the intracranial arteries has been suspected in the population with SIH. Therefore, the authors reviewed angiographic studies for the presence of intracranial aneurysms in a group of patients with SIH.

Methods

Magnetic resonance angiography studies of the brain were performed in 93 patients with SIH (mean age 43 years, range 14–86 years) and in 291 controls (mean age 56 years, range 28–78 years).

Results

Intracranial aneurysms were detected in 8 (8.6%) of the 93 patients with SIH (95% CI 2.9%–14.3%). This incidence was higher than in the control population (3 (1.0%) of 291 (95% CI 0%–2.2%; p = 0.0007). In 7 patients the aneurysms were incidental, and in 1 patient SIH developed 5 weeks after an aneurysmal subarachnoid hemorrhage.

Conclusions

In this retrospective case-control study, the frequency of intracranial aneurysms among patients with SIH was significantly higher than in the control population.

Restricted access

Wouter I. Schievink, M. Marcel Maya and Miriam Nuño

Object

Spontaneous intracranial hypotension is an important cause of new-onset daily persistent headache. Cerebellar hemorrhage has been identified as a possible feature of spontaneous intracranial hypotension. The authors reviewed the MR imaging studies from a group of patients with spontaneous intracranial hypotension to assess the presence of cerebellar hemorrhage.

Methods

Medical records and radiological images were reviewed in 262 cases involving patients with spontaneous intracranial hypotension who had undergone MR imaging of the brain as well as spinal imaging.

Results

Chronic cerebellar hemorrhages were found in 7 (2.7%) of the 262 patients with spontaneous intracranial hypotension. These hemorrhages were found in 7 (19.4%) of the 36 patients with a ventral spinal CSF leak and in none of the 226 patients who did not have such a CSF leak (p < 0.0001). The degree of hemosiderin deposits was variable, ranging from mild involvement of the cerebellar folia to widespread superficial siderosis. Only the 1 patient with superficial siderosis had symptoms due to the hemorrhages. The time period between the onset of symptoms due to spontaneous intracranial hypotension and MR imaging examination was significantly longer in those patients with cerebellar hemorrhage than in those with a ventral spinal CSF leak and no evidence for cerebellar hemorrhage (mean 19.6 years vs 2.3 months, p < 0.0001).

Conclusions

Chronic cerebellar hemorrhage should be included among the manifestations of spontaneous intracranial hypotension. The severity is variable, but the hemorrhage generally is asymptomatic. The underlying spinal CSF leak is ventral and mostly of long duration.

Full access

Wouter I. Schievink, Philip Wasserstein and M. Marcel Maya

Spontaneous intracranial hypotension due to a spinal CSF leak has become a well-recognized cause of headaches, but such spinal CSF leaks also are found in approximately half of patients with superficial siderosis of the CNS. It has been hypothesized that friable vessels at the site of the spinal CSF leak are the likely source of chronic bleeding in these patients, but such an intraspinal hemorrhage has never been visualized. The authors report on 2 patients with spontaneous intracranial hypotension and intraspinal hemorrhage, offering support for this hypothesis. A 33-year-old man and a 62-year-old woman with spontaneous intracranial hypotension were found to have a hemorrhage within the ventral spinal CSF collection and within the thecal sac, respectively. Treatment consisted of microsurgical repair of a ventral dural tear in the first patient and epidural blood patching in the second patient. The authors suggest that spontaneous intracranial hypotension should be included in the differential diagnosis of spontaneous intraspinal hemorrhage, and that the intraspinal hemorrhage can account for the finding of superficial siderosis when the CSF leak remains untreated.

Full access

Wouter I. Schievink, M. Marcel Maya and Franklin G. Moser

OBJECTIVE

Post–dural puncture headaches are common, and the treatment of such headaches can be complex when they become chronic. Among patients with spontaneous spinal CSF leaks, digital subtraction myelography (DSM) can localize the exact site of the leak when an extradural CSF collection is present, and it can also demonstrate CSF-venous fistulas in those without an extradural CSF collection. The authors now report on the use of DSM in the management of patients with chronic post–dural puncture headaches.

METHODS

The patient population consisted of a consecutive group of 27 patients with recalcitrant post–dural puncture headache that had lasted from 2 to 150 months (mean 26 months).

RESULTS

The mean age of the 17 women and 10 men was 39.1 years (range 18–77 years). An extensive extradural CSF collection was present in 5 of the 27 patients, and DSM was able to localize the exact site of the dural defect in all 5 patients. Among the 22 patients who did not have an extradural CSF collection, DSM showed a CSF-venous fistula in 1 patient (5%). Three other patients had a small pseudomeningocele at the level of the dural puncture. Percutaneous glue injection or microsurgical repair resulted in resolution of symptoms in 8 of the 9 patients in whom an abnormality had been identified on imaging.

CONCLUSIONS

Digital subtraction myelography is able to precisely localize the dural puncture site in patients with a post–dural puncture headache and an extensive extradural CSF collection, and it may rarely detect a CSF-venous fistula in such patients without an extradural CSF collection.

Restricted access

Wouter I. Schievink, M. Marcel Maya and Franklin G. Moser

A spinal CSF–venous fistula is one of three specific types of spinal CSF leak that can be seen in patients with spontaneous intracranial hypotension (SIH). They are best demonstrated on specialized imaging, such as digital subtraction myelography (DSM) or dynamic myelography, but often they are diagnosed on the basis of increased contrast density in the draining veins (the so-called hyperdense paraspinal vein sign) on early postmyelography CT scans. The authors report on 2 patients who underwent directed treatment (surgery in one patient and glue injection in the other) based on the hyperdense paraspinal vein sign, in whom the actual site of the fistula did not correspond to the level or laterality of the hyperdense paraspinal vein sign. The authors suggest consideration of DSM or dynamic myelography prior to undertaking treatment directed at these fistulas.

Restricted access

Wouter I. Schievink, M. Marcel Maya, Franklin G. Moser and James Tourje

Object. Spontaneous intracranial hypotension is a noteworthy but commonly misdiagnosed cause of new daily persistent headaches. Subdural fluid collections are frequent radiographic findings, but they can be interpreted as primary rather than secondary pathological entities, and uncertainties exist regarding their optimal management. The authors therefore reviewed their experience with subdural fluid collections in 40 consecutive patients with spontaneous spinal cerebrospinal fluid (CSF) leaks and intracranial hypotension.

Methods. The mean age of the 26 female and 14 male patients was 43 years (range 13–72 years). Subdural fluid collections were present in 20 patients (50%); 12 of these patients (60%) had subdural hygromas alone, and eight (40%) had subacute to chronic subdural hematomas (SDHs) associated with significant mass effect. The subdural hygromas resolved within several days to weeks following treatment of the underlying CSF leak. Three patients with SDHs underwent evacuation of the hematoma prior to the establishment of the diagnosis of spontaneous intracranial hypotension, but the SDHs did not resolve until the underlying spinal CSF leak was treated. In the remaining five patients, the CSF leak was treated primarily and the SDHs resolved over a 1- to 3-month period without the need for evacuation.

Conclusions. Subdural fluid collections are common in spontaneous intracranial hypotension, varying in appearance from thin subdural hygromas to large SDHs associated with significant mass effect. These collections can be safely managed by directing treatment at the underlying CSF leak without the need for hematoma evacuation.