Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: Luis Reyes x
Clear All Modify Search
Restricted access

Alberto Di Somma, Cristobal Langdon, Matteo de Notaris, Luis Reyes, Santiago Ortiz-Perez, Isam Alobid and Joaquim Enseñat

OBJECTIVE

Over the years, Meckel’s cave pathologies have been judged off-limits because of high rates of morbidity. Even though several studies have defined various surgical routes with tolerable morbidity and mortality rates, controversies related to the optimal avenue to treat different categories of Meckel’s cave and cavernous sinus neoplasms persist.

With unceasing energy to cultivate minimally invasive neurosurgical approaches, the endoscopic endonasal route has been tested, and the approach effectively performed, to provide a valid surgical window to these areas. In this dynamic and challenging scenario, another ventral endoscopic minimally invasive route—that is, the superior eyelid endoscopic transorbital approach—has been very recently proposed, and used in selected cases, to access the cavernous sinus and Meckel’s cave regions.

METHODS

The authors report the technical nuances of a combined and simultaneous endoscopic endonasal and transorbital surgical treatment of a patient with a Meckel’s cave schwannoma. The operation involved collaboration among neurosurgery, otorhinolaryngology, and ophthalmology (oculoplastic surgery). The patient recovered well, had no neurological deficits, and was discharged to home 3 days after surgery.

RESULTS

The multiportal combined route was proposed for the following reasons. The endonasal approach, considered to be more familiar to our skull base team, could allow control of possible damage of the internal carotid artery. From the endonasal perspective, the most inferior and medial portion of the tumor could be properly managed. Finally, the transorbital route, by means of opening the lateral wall of the cavernous sinus via the meningoorbital band, could allow control of the superolateral part of the tumor and, most importantly, could permit removal of the portion entering the posterior cranial fossa via the trigeminal pore. Simultaneous surgery with two surgical teams working together was planned in order to reduce operative time, hospital stay, and patient stress and discomfort, and to ensure “one-shot” complete tumor removal, with minimal or no complications.

CONCLUSIONS

This study represents the translation into the real surgical setting of recent anatomical contributions related to the novel endoscopic transorbital approach and its simultaneous integration with the endoscopic endonasal pathway. Accordingly, it may pave the way for future applications related to minimally invasive, multiportal endoscopic surgery for skull base tumors.

Restricted access

Andrew S. Little, Luis Perez-Orribo, Nestor G. Rodriguez-Martinez, Phillip M. Reyes, Anna G. U. S. Newcomb, Daniel M. Prevedello and Neil R. Crawford

Object

Endoscopic endonasal approaches to the craniovertebral junction (CVJ) and clivus are increasingly performed for ventral skull-base pathology, but the biomechanical implications of these approaches have not been studied. The aim of this study was to investigate the spinal biomechanics of the CVJ after an inferior-third clivectomy and anterior intradural exposure of the foramen magnum as would be performed in an endonasal endoscopic surgical strategy.

Methods

Seven upper-cervical human cadaveric specimens (occiput [Oc]–C2) underwent nondestructive biomechanical flexibility testing during flexion-extension, axial rotation, and lateral bending at Oc–C1 and C1–2. Each specimen was tested intact, after an inferior-third clivectomy, and after ligamentous complex dissection simulating a wide intradural exposure using an anterior approach. Angular range of motion (ROM), lax zone, and stiff zone were determined and compared with the intact state.

Results

Modest, but statistically significant, hypermobility was observed after inferior-third clivectomy and intradural exposure during flexion-extension and axial rotation at Oc–C1. Angular ROM increased incrementally between 6% and 12% in flexion-extension and axial rotation. These increases were primarily the result of changes in the lax zone. No significant changes were noted at C1–2.

Conclusions

Inferior-third clivectomy and an intradural exposure to the ventral CVJ and foramen magnum resulted in hypermobility at Oc–C1 during flexion-extension and axial rotation. Although the results were statistically significant, the modest degree of hypermobility observed compared with other well-characterized CVJ injuries suggests that occipitocervical stabilization may be unnecessary for most patients.

Full access

Alejandro Urban-Baeza, Barón Zárate-Kalfópulos, Samuel Romero-Vargas, Claudia Obil-Chavarría, Luis Brenes-Rojas and Alejandro Reyes-Sánchez

OBJECT

This prospective cohort study was designed to determine the influence of depressive symptoms on patient expectations and the clinical outcomes of the surgical management of lumbar spinal stenosis.

METHODS

Patients with an age > 45 years, a diagnosis of lumbar spinal stenosis at one level, and an indication for decompressive surgery were included in this study. Data for all of the following parameters were recorded: age, sex, highest level of education, and employment status. Depression symptoms (Beck Depression Inventory), disability (Oswestry Disability Index), and back and leg pain (visual analog scale) were assessed before surgery and at 12 months thereafter. The reasons for surgery and patient expectations (North American Spine Society lumbar spine questionnaire) were noted before surgery. The global effectiveness of surgery (Likert scale) was assessed at the 1-year follow-up.

RESULTS

Fifty-eight patients were divided into two groups based on the presence (Group 1) or absence (Group 2) of depressive symptoms preoperatively; each group comprised 29 patients. Demographic data were similar in both groups before surgery. The main reason to undergo surgery was “fear of a worse situation” in 34% of the patients in Group 1 and “to reduce pain” in 24% of the patients in Group 2. The most prevalent expectation was to improve my social life and my mental health in both groups. Surgery had a relieving effect on the depressive symptoms in 14 patients (48%). Thus, in the postoperative period, the number of patients who were free of depressive symptoms was 43 compared with the 15 who were depressed (p = 0.001). The 15 patients with persistent depression symptoms after surgery had a worse clinical outcome compared with the 43 patients free of depression symptoms at the 1-year follow-up in terms of severe back pain (20% vs 0%, respectively), severe leg pain (40% vs 2.3%, respectively), and severe disability (53% vs 9.3%, respectively). Only 33% of patients with persistent depression symptoms after surgery chose the option “surgery helped a lot” compared with 76% of patients without depression symptoms. Moreover, in terms of expectations regarding improvement in back pain, leg pain, walking capacity, independence, physical duties, and social activities, fewer patients were “completely satisfied” in the group with persistent depression symptoms after surgery.

CONCLUSIONS

Surgery for spinal stenosis had a relieving effect on preoperative depression symptoms at the 1-year follow-up. The persistence of depressive symptoms after surgery correlated with a worse clinical outcome and a higher rate of unmet expectations. Screening measures to detect and treat depression symptoms in the perioperative period could lead to better clinical results and increased patient satisfaction.

Full access

Nestor G. Rodriguez-Martinez, Luis Perez-Orribo, Samuel Kalb, Phillip M. Reyes, Anna G. U. S. Newcomb, Jeremy Hughes, Nicholas Theodore and Neil R. Crawford

OBJECT

The effects of obesity on lumbar biomechanics are not fully understood. The aims of this study were to analyze the biomechanical differences between cadaveric L4–5 lumbar spine segments from a large group of nonobese (body mass index [BMI] < 30 kg/m2) and obese (BMI ≥ 30 kg/m2) donors and to determine if there were any radiological differences between spines from nonobese and obese donors using MR imaging.

METHODS

A total of 168 intact L4–5 spinal segments (87 males and 81 females) were tested using pure-moment loading, simulating flexion-extension, lateral bending, and axial rotation. Axial compression tests were performed on 38 of the specimens. Sex, age, and BMI were analyzed with biomechanical parameters using 1-way ANOVA, Pearson correlation, and multiple regression analyses. MR images were obtained in 12 specimens (8 from obese and 4 from nonobese donors) using a 3-T MR scanner.

RESULTS

The segments from the obese male group allowed significantly greater range of motion (ROM) than those from the nonobese male group during axial rotation (p = 0.018), while there was no difference between segments from obese and nonobese females (p = 0.687). There were no differences in ROM between spines from obese and nonobese donors during flexion-extension or lateral bending for either sex. In the nonobese population, the ROM during axial rotation was significantly greater for females than for males (p = 0.009). There was no significant difference between sexes in the obese population (p = 0.892). Axial compressive stiffness was significantly greater for the obese than the nonobese population for both the female-only group and the entire study group (p < 0.01); however, the difference was nonsignificant in the male population (p = 0.304). Correlation analysis confirmed a significant negative correlation between BMI and resistance to deformation during axial compression in the female group (R = −0.65, p = 0.004), with no relationship in the male group (R = 0.03, p = 0.9). There was also a significant negative correlation between ROM during flexion-extension and BMI for the female group (R = −0.38, p = 0.001), with no relationship for the male group (R = 0.06, p = 0.58). Qualitative analysis using MR imaging indicated greater facet degeneration and a greater incidence of disc herniations in the obese group than in the control group.

CONCLUSIONS

Based on flexibility and compression tests, lumbar spinal segments from obese versus nonobese donors seem to behave differently, biomechanically, during axial rotation and compression. The differences are more pronounced in women. MR imaging suggests that these differences may be due to greater facet degeneration and an increased amount of disc herniation in the spines from obese individuals.

Full access

Nestor G. Rodriguez-Martinez, Sam Safavi-Abbasi, Luis Perez-Orribo, Anna G. U. S. Newcomb, Phillip M. Reyes, Galyna Loughran, Nicholas Theodore and Neil R. Crawford

OBJECT

The Universal Clamp Spinal Fixation System (UC) is a novel sublaminar connection for the spine that is currently used in conjunction with pedicle screws at the thoracic levels for the correction of scoliosis. This device allows the surgeon to attach rods and incorporate a pedicle screw construction. The flexible composition of the UC should provide flexibility intermediate to the uninstrumented spine and an all-screw construct. This hypothesis was tested in vitro using nondestructive flexibility testing of human cadaveric spine segments.

METHODS

Six unembalmed human cadaveric thoracic spine segments from T-3 to T-11 were used. The specimens were tested under the following conditions: 1) intact; 2) after bilateral screws were placed at T4-T10 and interconnected with longitudinal rods; 3) after placement of a hybrid construction with screws at T-4, T-7, and T-10 with an interconnecting rod on one side and screws at T-4 and T-10 with the UC at T5–9 on the contralateral side; (4) after bilateral screws were placed at T-4 and T-10 and interconnected with rods and bilateral UC were placed at T5–9; and 5) after bilateral screws at T-4 and T-10 were placed and interconnected with rods and bilateral sublaminar cables were placed at T5–9. Pure moments of 6.0 Nm were applied while optoelectronically recording 3D angular motion.

RESULTS

Bilateral UC placement and bilateral sublaminar cables both resulted in a significantly greater range of motion than bilateral pedicle screws during lateral bending and axial rotation, but not during flexion or extension. There were no differences in stability between bilateral UC and bilateral cables. The construct with limited screws on one side and UC contralaterally showed comparable stability to bilateral UC and bilateral cables.

CONCLUSIONS

These results support using the UC as a therapeutic option for spinal stabilization because it allows comparable stability to the sublaminar cables and provides flexibility intermediate to that of the uninstrumented spine and an all-screw construct. Equivalent stability of the hybrid, bilateral UC, and bilateral cable constructs indicates that 6-level UC provides stability comparable to that of a limited (3-point) pedicle screw-rod construct.