Search Results

You are looking at 1 - 10 of 15 items for

  • Author or Editor: Ludvic Zrinzo x
  • All content x
Clear All Modify Search
Restricted access

Joshua Pepper, Ludvic Zrinzo, and Marwan Hariz

Over the last two decades, deep brain stimulation (DBS) has gained popularity as a treatment of severe and medically refractory obsessive-compulsive disorder (OCD), often using brain targets informed by historical lesional neurosurgical procedures. Paradoxically, the use of DBS in OCD has led some multidisciplinary teams to revisit the use of lesional procedures, especially anterior capsulotomy (AC), although significant aversion still exists toward the use of lesional neurosurgery for psychiatric disorders. This paper aims to review all literature on the use of AC for OCD to examine its effectiveness and safety profile.

All publications on AC for OCD were searched. In total 512 patients were identified in 25 publications spanning 1961–2018. In papers where a Yale-Brown Obsessive Compulsive Scale (Y-BOCS) score was available, 73% of patients had a clinical response (i.e., > 35% improvement in Y-BOCS score) and 24% patients went into remission (Y-BOCS score < 8). In the older publications, published when the Y-BOCS was not yet available, 90% of patients were deemed to have had a significant clinical response and 39% of patients were considered symptom free. The rate of serious complications was low.

In summary, AC is a safe, well-tolerated, and efficacious therapy. Its underuse is likely a result of historical prejudice rather than lack of clinical effectiveness.

Full access

Joshua Pepper, Marwan Hariz, and Ludvic Zrinzo

Obsessive-compulsive disorder (OCD) is a chronic and debilitating psychiatric condition. Traditionally, anterior capsulotomy (AC) was an established procedure for treatment of patients with refractory OCD. Over recent decades, deep brain stimulation (DBS) has gained popularity. In this paper the authors review the published literature and compare the outcome of AC and DBS targeting of the area of the ventral capsule/ventral striatum (VC/VS) and nucleus accumbens (NAcc).

Patients in published cases were grouped according to whether they received AC or DBS and according to their preoperative scores on the Yale-Brown Obsessive-Compulsive Scale (YBOCS), and then separated according to outcome measures: remission (YBOCS score < 8); response (≥ 35% improvement in YBOCS score); nonresponse (< 35% improvement in YBOCS score); and unfavorable (i.e., worsening of the baseline YBOCS score).

Twenty studies were identified reporting on 170 patients; 62 patients underwent DBS of the VC/VS or the NAcc (mean age 38 years, follow-up 19 months, baseline YBOCS score of 33), and 108 patients underwent AC (mean age 36 years, follow-up 61 months, baseline YBOCS score of 30). In patients treated with DBS there was a 40% decrease in YBOCS score, compared with a 51% decrease for those who underwent AC (p = 0.004). Patients who underwent AC were 9% more likely to go into remission than patients treated with DBS (p = 0.02). No difference in complication rates was noted.

Anterior capsulotomy is an efficient procedure for refractory OCD. Deep brain stimulation in the VC/VS and NAcc area is an emerging and promising therapy. The current popularity of DBS over ablative surgery for OCD is not due to nonefficacy of AC, but possibly because DBS is perceived as more acceptable by clinicians and patients.

Restricted access

Ludvic U. Zrinzo, Matthew Crocker, Laurence V. Zrinzo, David G. T. Thomas, and Laurence Watkins

✓The authors report two cases of neurological deterioration following long commercial flights. Both individuals harbored intracranial space-occupying lesions. The authors assert that preexisting reduced intracranial compliance diminishes an individual’s reserve to accommodate the physiological changes resulting from a commercial flight. Airline passengers are exposed to a mild degree of hypercapnia as well as conditions that simulate those of high-altitude ascents. High-altitude cerebral edema following an ascent to great heights is one facet of acute mountain sickness and can be life threatening in conditions similar to those present on commercial flights. Comparable reports documenting neurological deterioration at high altitudes in patients with coexisting space-occupying lesions were also reviewed.

Full access

Marwan I. Hariz, Patric Blomstedt, and Ludvic Zrinzo

Deep brain stimulation (DBS) is the most rapidly expanding field in neurosurgery. Movement disorders are well-established indications for DBS, and a number of other neurological and psychiatric indications are currently being investigated.

Numerous contemporary opinions, reviews, and viewpoints on DBS fail to provide a comprehensive account of how this method came into being. Misconceptions in the narrative history of DBS conveyed by the wealth of literature published over the last 2 decades can be summarized as follows: Deep brain stimulation was invented in 1987. The utility of high-frequency stimulation was also discovered in 1987. Lesional surgery preceded DBS. Deep brain stimulation was first used in the treatment of movement disorders and was subsequently used in the treatment of psychiatric and behavioral disorders. Reports of nonmotor effects of subthalamic nucleus DBS prompted its use in psychiatric illness. Early surgical interventions for psychiatric illness failed to adopt a multidisciplinary approach; neurosurgeons often worked “in isolation” from other medical specialists. The involvement of neuro-ethicists and multidisciplinary teams are novel standards introduced in the modern practice of DBS for mental illness that are essential in avoiding the unethical behavior of bygone eras.

In this paper, the authors examined each of these messages in the light of literature published since 1947 and formed the following conclusions. Chronic stimulation of subcortical structures was first used in the early 1950s, very soon after the introduction of human stereotaxy. Studies and debate on the stimulation frequency most likely to achieve desirable results and avoid side effects date back to the early days of DBS; several authors advocated the use of “high” frequency, although the exact frequency was not always specified. Ablative surgery and electrical stimulation developed in parallel, practically since the introduction of human stereotactic surgery. The first applications of both ablative surgery and chronic subcortical stimulation were in psychiatry, not in movement disorders. The renaissance of DBS in surgical treatment of psychiatric illness in 1999 had little to do with nonmotor effects of subthalamic nucleus DBS but involved high-frequency stimulation of the very same brain targets previously used in ablative surgery. Pioneers in functional neurosurgery mostly worked in multidisciplinary groups, including when treating psychiatric illness; those “acting in isolation” were not neurosurgeons. Ethical concerns have indeed been addressed in the past, by neurosurgeons and others. Some of the questionable behavior in surgery for psychiatric illness, including the bygone era of DBS, was at the hands of nonneurosurgeons. These practices have been deemed as “dubious and precarious by yesterday's standards.”

Full access

Ludvic Zrinzo, Marwan Hariz, Jonathan A. Hyam, Thomas Foltynie, and Patricia Limousin

Restricted access

Ludvic Zrinzo, Thomas Foltynie, Patricia Limousin, and Marwan I. Hariz


Hemorrhagic complications carry by far the highest risk of devastating neurological outcome in functional neurosurgery. Literature published over the past 10 years suggests that hemorrhage, although relatively rare, remains a significant problem. Estimating the true incidence of and risk factors for hemorrhage in functional neurosurgery is a challenging issue.


The authors analyzed the hemorrhage rate in a consecutive series of 214 patients undergoing imageguided deep brain stimulation (DBS) lead placement without microelectrode recording (MER) and with routine postoperative MR imaging lead verification. They also conducted a systematic review of the literature on stereotactic ablative surgery and DBS over a 10-year period to determine the incidence and risk factors for hemorrhage as a complication of functional neurosurgery.


The total incidence of hemorrhage in our series of image-guided DBS was 0.9%: asymptomatic in 0.5%, symptomatic in 0.5%, and causing permanent deficit in 0.0% of patients. Weighted means calculated from the literature review suggest that the overall incidence of hemorrhage in functional neurosurgery is 5.0%, with asymptomatic hemorrhage occurring in 1.9% of patients, symptomatic hemorrhage in 2.1% and hemorrhage resulting in permanent deficit or death in 1.1%. Hypertension and age were the most important patient-related factors associated with an increased risk of hemorrhage. Risk factors related to surgical technique included use of MER, number of MER penetrations, as well as sulcal or ventricular involvement by the trajectory. The incidence of hemorrhage in studies adopting an image-guided and image-verified approach without MER was significantly lower than that reported with other operative techniques (p < 0.001 for total number of hemorrhages, p < 0.001 for asymptomatic hemorrhage, p < 0.004 for symptomatic hemorrhage, and p = 0.001 for hemorrhage leading to permanent deficit; Fisher exact test).


Age and a history of hypertension are associated with an increased risk of hemorrhage in functional neurosurgery. Surgical factors that increase the risk of hemorrhage include the use of MER and sulcal or ventricular incursion. The meticulous use of neuroimaging—both in planning the trajectory and for target verification—can avoid all of these surgery-related risk factors and appears to carry a significantly lower risk of hemorrhage and associated permanent deficit.

Full access

Fiona A. Wilkes, Harith Akram, Jonathan A. Hyam, Neil D. Kitchen, Marwan I. Hariz, and Ludvic Zrinzo


Bibliometrics are the methods used to quantitatively analyze scientific literature. In this study, bibliometrics were used to quantify the scientific output of neurosurgical departments throughout Great Britain and Ireland.


A list of neurosurgical departments was obtained from the Society of British Neurological Surgeons website. Individual departments were contacted for an up-to-date list of consultant (attending) neurosurgeons practicing in these departments. Scopus was used to determine the h-index and m-quotient for each neurosurgeon. Indices were measured by surgeon and by departmental mean and total. Additional information was collected about the surgeon's sex, title, listed superspecialties, higher research degrees, and year of medical qualification.


Data were analyzed for 315 neurosurgeons (25 female). The median h-index and m-quotient were 6.00 and 0.41, respectively. These were significantly higher for professors (h-index 21.50; m-quotient 0.71) and for those with an additional MD or PhD (11.0; 0.57). There was no significant difference in h-index, m-quotient, or higher research degrees between the sexes. However, none of the 16 British neurosurgery professors were female. Neurosurgeons who specialized in functional/epilepsy surgery ranked highest in terms of publication productivity. The 5 top-scoring departments were those in Addenbrooke's Hospital, Cambridge; St. George's Hospital, London; Great Ormond Street Hospital, London; National Hospital for Neurology and Neurosurgery, Queen Square, London; and John Radcliffe Hospital, Oxford.


The h-index is a useful bibliometric marker, particularly when comparing between studies and individuals. The m-quotient reduces bias toward established researchers. British academic neurosurgeons face considerable challenges, and women remain underrepresented in both clinical and academic neurosurgery in Britain and Ireland.

Restricted access

Ludvic Zrinzo, Arjen L. J. van Hulzen, Alessandra A. Gorgulho, Patricia Limousin, Michiel J. Staal, Antonio A. F. De Salles, and Marwan I. Hariz


The authors examined the accuracy of anatomical targeting during electrode implantation for deep brain stimulation in functional neurosurgical procedures. Special attention was focused on the impact that ventricular involvement of the electrode trajectory had on targeting accuracy.


The targeting error during electrode placement was assessed in 162 electrodes implanted in 109 patients at 2 centers. The targeting error was calculated as the shortest distance from the intended stereotactic coordinates to the final electrode trajectory as defined on postoperative stereotactic imaging. The trajectory of these electrodes in relation to the lateral ventricles was also analyzed on postoperative images.


The trajectory of 68 electrodes involved the ventricle. The targeting error for all electrodes was calculated: the mean ± SD and the 95% CI of the mean was 1.5 ± 1.0 and 0.1 mm, respectively. The same calculations for targeting error for electrode trajectories that did not involve the ventricle were 1.2 ± 0.7 and 0.1 mm. A significantly larger targeting error was seen in trajectories that involved the ventricle (1.9 ± 1.1 and 0.3 mm; p < 0.001). Thirty electrodes (19%) required multiple passes before final electrode implantation on the basis of physiological and/or clinical observations. There was a significant association between an increased requirement for multiple brain passes and ventricular involvement in the trajectory (p < 0.01).


Planning an electrode trajectory that avoids the ventricles is a simple precaution that significantly improves the accuracy of anatomical targeting during electrode placement for deep brain stimulation. Avoidance of the ventricles appears to reduce the need for multiple passes through the brain to reach the desired target as defined by clinical and physiological observations.