Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Love Buch x
  • All content x
Clear All Modify Search
Free access

Clare W. Teng, Steve S. Cho, Yash Singh, Emma De Ravin, Keren Somers, Love Buch, Steven Brem, Sunil Singhal, Edward J. Delikatny, and John Y. K. Lee

OBJECTIVE

Metastases are the most common intracranial malignancies and complete resection can provide relief of neurological symptoms and reduce recurrence. The authors’ prospective pilot study in 2017 demonstrated promising results for the application of high-dose, delayed imaging of indocyanine green (ICG), known as second window ICG (SWIG), in patients undergoing surgery for brain metastases. In this prospective cohort study, the authors evaluated intraoperative imaging and clinical outcomes of treatment using SWIG.

METHODS

Patients were prospectively enrolled in an approved study of high-dose, delayed ICG (SWIG) and received 5 mg/kg (2014–2018) or 2.5 mg/kg (2018–2019) ICG 24 hours preoperatively. Intraoperatively, near-infrared (NIR) imaging was performed using a dedicated NIR exoscope. NIR images were analyzed and the signal-to-background ratio (SBR) was calculated to quantify fluorescence. Residual fluorescence on the postresection NIR view was compared and correlated to the residual gadolinium enhancement on postoperative MRI. Patient survival and predictive factors were analyzed.

RESULTS

In total, 51 intracranial metastases were surgically treated in 47 patients in this cohort. All 51 metastatic tumors demonstrated strong NIR fluorescence (mean SBR 4.9). In tumors ≤ 10 mm from the cortical surface, SWIG with 5 mg/kg ICG produced enhanced transdural tumor visibility (91.3%) compared to 2.5 mg/kg (52.9%; p = 0.0047). Neoplastic margin detection using NIR fluorescence compared to white light improved sensitivity, albeit lowered specificity; however, increasing the SBR cutoff for positive fluorescence significantly improved specificity without sacrificing sensitivity, increasing the overall accuracy from 57.5% to 72.5%. A lack of residual NIR fluorescence after resection was closely correlated with a lack of residual enhancement on postoperative MRI (p = 0.007). Among the 16 patients in whom tumor recurred at the site of surgery, postoperative MRI successfully predicted 8 cases, whereas the postresection NIR view predicted 12 cases. Progression-free survival rate at 12 months was greater for patients without residual NIR fluorescence (38%) than for those without residual enhancement on postoperative MRI (29%).

CONCLUSIONS

The current study demonstrates the clinical benefits of the SWIG technique in surgery for patients with brain metastases. Specifically, this technique allows for dose-dependent, transdural localization of neoplasms and improved sensitivity in neoplastic margin detection. Postresection residual fluorescence can be a powerful tool to evaluate extent of resection in conjunction with MRI, and it may guide decisions on brain metastasis management.

Full access

Steve S. Cho, Jun Jeon, Love Buch, Shayoni Nag, MacLean Nasrallah, Philip S. Low, M. Sean Grady, Sunil Singhal, and John Y. K. Lee

OBJECTIVE

Intraoperative molecular imaging with tumor-targeted fluorescent dyes can enhance resection rates. In contrast to visible-light fluorophores (e.g., 5-aminolevulinic-acid), near-infrared (NIR) fluorophores have increased photon tissue penetration and less contamination from tissue autofluorescence. The second-window ICG (SWIG) technique relies on passive accumulation of indocyanine green (ICG) in neoplastic tissues. OTL38, conversely, targets folate receptor overexpression in nonfunctioning pituitary adenomas. In this study, we compare the properties of these 2 modalities for NIR imaging of pituitary adenomas to better understand the potential for NIR imaging in neurosurgery.

METHODS

A total of 39 patients with pituitary adenomas were enrolled between June 2015 and January 2018 in 2, sequential, IRB-approved studies. Sixteen patients received systemic ICG infusions 24 hours prior to surgery, and another 23 patients received OTL38 infusions 2–3 hours prior to surgery. NIR fluorescence signal-to-background ratio (SBR) was recorded during and after resection. Immunohistochemistry was performed on the 23 adenomas resected from patients who received OTL38 to assess expression of folate receptor–alpha (FRα).

RESULTS

All 16 adenomas operated on after ICG administration demonstrated strong NIR fluorescence (mean SBR 4.1 ± 0.69 [SD]). There was no statistically significant difference between the 9 functioning and 7 nonfunctioning adenomas (p = 0.9). After administration of OTL38, the mean SBR was 1.7 ± 0.47 for functioning adenomas, 2.6 ± 0.91 for all nonfunctioning adenomas, and 3.2 ± 0.53 for the subset of FRα-overexpressing adenomas. Tissue identification with white light alone for all adenomas demonstrated 88% sensitivity and 90% specificity. SWIG demonstrated 100% sensitivity but only 29% specificity for both functioning and nonfunctioning adenomas. OTL38 was 75% sensitive and 100% specific for all nonfunctioning adenomas, but when assessment was limited to the 9 FRα-overexpressing adenomas, the sensitivity and specificity of OTL38 were both 100%.

CONCLUSIONS

Intraoperative imaging with NIR fluorophores demonstrates highly sensitive detection of pituitary adenomas. OTL38, a folate-receptor–targeted fluorophore, is highly specific for nonfunctioning adenomas but has no utility in functioning adenomas. SWIG, which relies on passive diffusion into neoplastic tissue, is applicable to both functioning and nonfunctioning pituitary adenomas, but it is less specific than targeted fluorophores. Thus, targeted and nontargeted NIR fluorophores play important, yet distinct, roles in intraoperative imaging. Selectively and intelligently using either agent has the potential to greatly improve resection rates and outcomes for patients with intracranial tumors.

Restricted access

Adomas Bunevicius, Mohand Suleiman, Samir Patel, Roberto Martínez Álvarez, Nuria E. Martinez Moreno, Roman Liscak, Jaromir Hanuska, Anne-Marie Langlois, David Mathieu, Christine Mau, Catherine Caldwell, Leonard C. Tuanquin, Brad E. Zacharia, James McInerney, Cheng-Chia Lee, Huai-Che Yang, Jennifer L. Peterson, Daniel M. Trifiletti, Akiyoshi Ogino, Hideyuki Kano, Ronald E. Warnick, Anissa Saylany, Love Y. Buch, John Y. K. Lee, Ben A. Strickland, Gabriel Zada, Eric L. Chang, L. Dade Lunsford, and Jason Sheehan

OBJECTIVE

Radiation-induced meningiomas (RIMs) are associated with aggressive clinical behavior. Stereotactic radiosurgery (SRS) is sometimes considered for selected RIMs. The authors investigated the effectiveness and safety of SRS for the management of RIMs.

METHODS

From 12 institutions participating in the International Radiosurgery Research Foundation, the authors pooled patients who had prior cranial irradiation and were subsequently clinically diagnosed with WHO grade I meningiomas that were managed with SRS.

RESULTS

Fifty-two patients underwent 60 SRS procedures for histologically confirmed or radiologically suspected WHO grade I RIMs. The median ages at initial cranial radiation therapy and SRS for RIM were 5.5 years and 39 years, respectively. The most common reasons for cranial radiation therapy were leukemia (21%) and medulloblastoma (17%). There were 39 multiple RIMs (35%), the mean target volume was 8.61 ± 7.80 cm3, and the median prescription dose was 14 Gy. The median imaging follow-up duration was 48 months (range 4–195 months). RIM progressed in 9 patients (17%) at a median duration of 30 months (range 3–45 months) after SRS. Progression-free survival at 5 years post-SRS was 83%. Treatment volume ≥ 5 cm3 predicted progression (HR 8.226, 95% CI 1.028–65.857, p = 0.047). Seven patients (14%) developed new neurological symptoms or experienced SRS-related complications or T2 signal change from 1 to 72 months after SRS.

CONCLUSIONS

SRS is associated with durable local control of RIMs in the majority of patients and has an acceptable safety profile. SRS can be considered for patients and tumors that are deemed suboptimal, poor surgical candidates, and those whose tumor again progresses after removal.