Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Liqun Jiao x
Clear All Modify Search
Restricted access

Qing Li, Beibei Liu, Yue Zhao, Yumei Liu, Mingjie Gao, Lingyun Jia, Liqun Jiao and Yang Hua

OBJECTIVE

The mechanism of carotid endarterectomy (CEA) restenosis remains unclear. Our research aimed to investigate the relationship between the carotid plaque grayscale median (GSM) value and restenosis after CEA.

METHODS

Between January 2010 and January 2018, 1280 consecutive patients underwent CEA at our institution; 32 patients were diagnosed with restenosis by ultrasound at 1 year after CEA. The correlations between plaque GSM, plaque echogenicity, clinical manifestations, shunting, and restenosis were analyzed.

RESULTS

In total, 829 patients were ultimately enrolled; 32 (4%) presented diagnoses of restenosis (mean age 67.3 ± 8.0 years, 81.2% men). The GSM value was lower in the restenosis group (68.1 ± 19.9 vs 59.9 ± 14.7, p = 0.02). After multiple logistic regression analysis, the GSM value was found to be an independent risk factor for restenosis (OR 0.976, 95% CI 0.957–0.995). Shunting was another significant independent risk factor for restenosis (OR 2.39, 95% CI 1.07–5.34). The GSM cutoff value for predicting restenosis was 75 (sensitivity 0.38, specificity 0.84, area under the curve 0.62). We separated the patients into 2 groups by GSM (GSM ≤ 75 and GSM > 75 subgroups). Comparison of the 2 groups indicated that symptomatic manifestation was related to restenosis in the subgroup with GSM ≤ 75, indicating predominantly echolucent plaques, but not in the subgroup with GSM > 75, indicating predominantly echogenic plaques.

CONCLUSIONS

Predominantly echolucent carotid plaques, as measured by GSM, had a higher restenosis risk at 1 year than echogenic plaques.

Restricted access

Feng Yan, Gary Rajah, Yuchuan Ding, Yang Hua, Hongqi Zhang, Liqun Jiao, Guilin Li, Ming Ren, Ran Meng, Feng Lin and Xunming Ji

OBJECTIVE

Symptomatic intracranial hypertension can be caused by cerebral venous sinus stenosis (CVSS) and cerebral venous sinus thrombotic (CVST) stenosis, which is usually found in some patients with idiopathic intracranial hypertension (IIH). Recently, at the authors’ center, they utilized intravascular ultrasound (IVUS) as an adjunct to conventional venoplasty or stenting to facilitate diagnosis and accurate stent placement in CVSS.

METHODS

The authors designed a retrospective review of their prospective database of patients who underwent IVUS-guided venous sinus stenting between April 2016 and February 2017. Clinical, radiological, and ophthalmological information was recorded and analyzed. IVUS was performed in 12 patients with IIH (9 with nonthrombotic CVSS, 3 with secondary stenosis combined with CVST) during venoplasty through venous access. The IVUS catheter was used from a proximal location to the site of stenosis. Post-stenting follow-up, including symptomatic improvement, stent patency, and adjacent-site stenosis, was assessed at 1 year.

RESULTS

Thirteen stenotic cerebral sinuses in 12 patients were corrected using IVUS-guided stenting. No technical or neurological complications were encountered. The IVUS images were excellent for the diagnosis of the stenosis, and intraluminal thrombi were clearly visualized by using IVUS in 3 (25%) of the 12 patients. A giant arachnoid granulation was demonstrated in 1 (8.3%) of the 12 patients. Intravenous compartments or septations (2 of 12, 16.7%) and vessel wall thickening (6 of 12, 50%) were also noted. At 1-year follow-up, 10 of 12 patients were clinically symptom-free in our series.

CONCLUSIONS

IVUS is a promising tool with the potential to improve the diagnostic accuracy in IIH, aiding in identification of the types of intracranial venous stenosis, assisting in stent selection, and guiding stent placement. Further study of the utility of IVUS in venous stenting and venous stenosis pathology is warranted.