Search Results

You are looking at 1 - 10 of 51 items for

  • Author or Editor: Liang Chen x
  • All content x
Clear All Modify Search
Restricted access

Han-Jung Chen, Cheng-Loong Liang, and Kang Lu

Object. Transthoracic endoscopic T2–3 sympathectomy is currently the treatment of choice for palmar hyperhidrosis. Compensatory sweating of the face, trunk, thigh, and sole of the foot was found in more than 50% of patients who underwent this procedure. The authors conducted this study to investigate the associated intraoperative changes in plantar skin temperature and postoperative plantar sweating.

Methods. One hundred patients with palmar hyperhidrosis underwent bilateral transthoracic endoscopic T2–3 sympathectomy. There were 60 female and 40 male patients who ranged in age from 13 to 40 years (mean age 21.6 years). Characteristics studied included changes in palmar and plantar skin temperature measured intraoperatively, as well as pre- and postoperative changes in plantar sweating and sympathetic skin responses (SSRs).

In 59 patients (59%) elevation of plantar temperature was demonstrated at the end of the surgical procedure. In this group, plantar sweating was found to be exacerbated in three patients (5%); plantar sweating was improved in 52 patients (88.1%); and no change was demonstrated in four patients (6.8%). In the other group of patients in whom no temperature change occurred, increased plantar sweating was demonstrated in three patients (7.3%); plantar sweating was improved in 20 patients (48.8%); and no change was shown in 18 patients (43.9%). The difference between temperature and sweating change was significant (p = 0.001).

Compared with the presympathectomy rate, the rate of absent SSR also significantly increased after sympathectomy: from 20 to 76% after electrical stimulation and 36 to 64% after deep inspiration stimulation, respectively (p < 0.05).

Conclusions. In contrast to compensatory sweating in other parts of the body after T2–3 sympathetomy, improvement in plantar sweating was shown in 72% and worsened symptoms in 6% of patients. The intraoperative plantar skin temperature change and perioperative SSR demonstrated a correlation between these changes.

Restricted access

Chen-Yu Ding, Han-Pei Cai, Hong-Liang Ge, Liang-Hong Yu, Yuan-Xiang Lin, and De-Zhi Kang

OBJECTIVE

The relationship between lipoprotein-associated phospholipase A2 (Lp-PLA2) and various cardiovascular and cerebrovascular diseases is inconsistent. However, the connection between Lp-PLA2 level and delayed cerebral ischemia (DCI) following aneurysmal subarachnoid hemorrhage (aSAH) remains unclear. The objective of this study was to investigate the relationships between the Lp-PLA2 levels in the early stages of aSAH and the occurrence of DCI.

METHODS

The authors evaluated 114 patients with aSAH who were enrolled into a prospective observational cohort study. Serum Lp-PLA2 level at admission (D0), on the first morning (D1), and on the second morning of hospitalization (D2) were determined using commercial enzyme-linked immunosorbent assay kits. The relationship between Lp-PLA2 levels and DCI was analyzed.

RESULTS

Forty-three patients with aSAH (37.72%) experienced DCI. Mean serum Lp-PLA2 level decreased from 183.06 ± 61.36 μg/L at D0 (D0 vs D1, p = 0.303), to 175.32 ± 51.49 μg/L at D1 and 167.24 ± 54.10 μg/L at D2 (D0 vs D2, p = 0.040). The Lp-PLA2 level changes (D0-D1 and D0-D2) were comparable between patients with and without DCI. Multivariate model analysis revealed Lp-PLA2 level (D0) > 200 μg/L was a more significant factor of DCI compared with Lp-PLA2 (D1) and Lp-PLA2 (D2), and was a strong predictor of DCI (odds ratio [OR] 6.24, 95% confidence interval [CI] 2.05–18.94, p = 0.001) after controlling for World Federation of Neurosurgical Societies (WFNS) grade (OR 3.35, 95% CI 1.18–9.51, p = 0.023) and modified Fisher grade (OR 6.07, 95% CI 2.03–18.14, p = 0.001). WFNS grade (area under the curve [AUC] = 0.792), modified Fisher grade (AUC = 0.731), and Lp-PLA2 level (D0; AUC = 0.710) were all strong predictors of DCI. The predictive powers of WFNS grade, modified Fisher grade, and Lp-PLA2 (D0) were comparable (WFNS grade vs Lp-PLA2: p = 0.233; modified Fisher grade vs Lp-PLA2: p = 0.771). The poor-grade patients with Lp-PLA2 (D0) > 200 μg/L had significantly worse DCI survival rate than poor-grade patients with Lp-PLA2 (D0) ≤ 200 μg/L (p < 0.001).

CONCLUSIONS

The serum level of Lp-PLA2 was significantly elevated in patients with DCI, and decreased within the first 2 days after admission. Lp-PLA2 in the early stages of aSAH might be a novel predictive biomarker for the occurrence of DCI.

Restricted access

Cheng-Hong Toh, Yao-Liang Chen, Ho-Fai Wong, Kuo-Chen Wei, Shu-Hang Ng, and Yung-Liang Wan

✓ Rosai—Dorfman disease (RDD) is an idiopathic proliferation of histiocytes that affects the lymph nodes. Central nervous system involvement in the absence of nodal disease is extremely rare. On neuroimaging studies, intracranial RDD appears as solitary or multiple well-circumscribed, dura-based lesions. The authors report on two cases of RDD with locally aggressive features including dural sinus invasion, which to their knowledge has never before been described.

A 60-year-old woman presented with progressive dizziness and vertigo that had lasted for 1 week. Cranial computerized tomography and magnetic resonance imaging revealed an extraaxial homogeneous lobulated enhancing mass involving the right occipital lobe and the right cerebellar hemisphere. Invasion of the right transverse sinus was identified on a cerebral digital subtraction angiogram. A 59-year-old man with no prior medical illness experienced progressive weakness of both upper extremities and a partial complex seizure. Magnetic resonance imaging of his brain revealed a well-circumscribed enhancing mass in the left frontal lobe with extension to the right frontal lobe and invasion of the superior sagittal sinus. Both patients underwent resection of their brain masses. Pathological studies identified the disease as RDD in both patients.

Restricted access

Kang Lu, Cheng-Loong Liang, Han-Jung Chen, Shang-Der Chen, Huan-Chen Hsu, Yun-Ching Chen, Fu-Fei Hsu, and Chung-Lung Cho

Object. Paraspinal muscle injury is a common but neglected complication of posterior spinal surgery. Evidence suggests that surgical retraction places mechanical and oxidative stress on the paraspinal muscles and that inflammation is a major postoperative pathological finding in the muscles. The roles of cyclooxygenase (COX)—2 and nuclear factor (NF)—κB in the inflammatory processes after retraction remains to be clarified.

Methods. In the control group, paraspinal muscles were dissected from the spine via a posterior incision and then laterally retracted. Paraspinal muscle specimens were harvested before as well as at designated time points during and after persistent retraction. The time course of NF-κB activation was determined by gel shift assay. Expression of COX-2 was examined using Western blot analysis and immunohistochemistry. The severity of inflammation was evaluated based on histopathology and myeloperoxidase (MPO) activity. The NF-κB activation was inhibited by the administration of pyrrolidine dithiolcarbamate (PDTC) in the PDTC-treated group. Retraction induced early activation of NF-κB in paraspinal muscle cells. The expression of COX-2 could not be detected until 1 day postoperativley, reaching a peak at 3 days. The time course of COX-2 expression correlated with that of inflammatory responses and MPO activity. Pretreatment with PDTC inhibited intraoperative NF-κB activation and greatly downregulated postoperative COX-2 expression and inflammation in the muscles. Postinflammation fibrosis was also abolished by PDTC administration.

Conclusions. Both NF-κB-regulated COX-2 expression and inflammation play an important role in the pathogenesis of surgery-associated paraspinal muscle injury. The therapeutic strategy of NF-κB inhibition may be applicable to the prevention of such injury.

Full access

Xiang Zou, Liangfu Zhou, Wei Zhu, Ying Mao, and Liang Chen

OBJECT

Intracranial dural arteriovenous fistulas (DAVFs) are complex intracranial vascular malformations that can lead to hemorrhage. The authors recently found that chronic local hypoperfusion seems to be the main cause of angiogenesis in the dura mater, which leads to the formation of DAVFs. As a natural derivative of estradiol, 2-methoxyestradiol (2-ME) has an antiangiogenic effect and can be used safely in patients with advanced carcinoid tumors. This study was conducted to examine the antiangiogenic effects of 2-ME on a rat DAVF model.

METHODS

Male Sprague-Dawley rats (n = 72) were used in the experiments. Intracranial venous hypertension was induced for modeling, and 2-ME was used in the early or late stage for treatment. The effects were examined by immunohistochemistry, Western blot analysis, and quantitative real-time polymerase chain reaction assays.

RESULTS

2-Methoxyestradiol significantly reduced angiogenesis in the dura in early- and late-intervention treatment groups, as proven by the results of immunohistochemical staining, Western blotting, real-time polymerase chain reaction assays, and microvessel density counts. The antiangiogenic effect even lasted for up to 2 weeks after 2-ME cessation.

CONCLUSIONS

These data collectively suggest that 2-ME can reduce the angiogenic effect caused by venous hypertension in a rat DAVF model, mainly by suppressing the inhibitor of differentiation 1 (ID-1) and hypoxia-inducible factor 1α (HIF-1α) pathways.

Restricted access

Yi-gang Huang, Liang Chen, Yu-dong Gu, and Guang-rong Yu

Object

In Erb palsy, the C-7 spinal nerve has been found to be more subject to avulsion than the C-5 and C-6 spinal nerves. This study investigated the morphological and biomechanical characteristics of the semiconic posterosuperior ligaments (SPLs) at the C-5, C-6, and C-7 spinal nerves in neonates.

Methods

Twenty-four brachial plexuses from 12 fresh neonate cadavers were used in this study. In 12 brachial plexuses from 6 cadavers, the following studies were performed with respect to the SPLs at the C-5, C-6, and C-7 spinal nerves: gross observation of morphological and histological characteristics; measurement of length, thickness, and width; and a semiquantitative analysis of collagen. In the other 6 cadavers, biomechanical tension testing was performed bilaterally on the C5–7 SPLs to assess the tensile strength of the ligaments.

Results

The C5–7 spinal nerves are fixed to the transverse process through the SPL, a structure not observed at the C-8 and T-1 spinal nerves. Except for the width of the SPL insertion on the spinal nerve, which was found to increase gradually from C-5 to C-7, there was no statistically significant difference in the dimensions of the C-5, C-6, and C-7 SPLs. The sectional area percentage of collagen was 51% ± 10% in SPLs for C-5, 51% ± 11% for C-6, and 41% ± 10% for C-7; and this percentage was significantly lower in SPLs for C-7 than for C-5 or C-6 (1-way ANOVA, F = 4.3, p = 0.02; Tukey honestly significant difference test, p = 0.04 and 0.04, respectively). Sharpey fibers were observed at the transverse process origin of the SPL at C-5 and C-6 but not at C-7. Biomechanical tension testing showed that the mean failure load was 6.6 ± 0.9 N for the C-5 SPL, 6.4 ± 1.0 N for the C-6 SPL, and 5.4 ± 0.9 N for the C-7 SPL, and the failure load was significantly lower in SPLs at C-7 than in those at C-5 or C-6 (1-way ANOVA, F = 5.1, p = 0.01; Tukey honestly significant difference, p = 0.01 and 0.048, respectively). Nine of 12 C-7 SPLs failed at their origin from the transverse process, while only 4 of 12 C-5 SPLs and 3 of 12 C-6 SPLs failed at the origin site.

Conclusions

These findings suggest that the lower density of collagen and absence of Sharpey fibers decrease the biomechanical properties of the C-7 SPL, and this may account for the higher frequency of avulsion of the C-7 spinal nerve (in comparison with the C-5 or C-6 nerve) in Erb palsy.

Full access

Zhonghui Chen, Song Li, Yong Qiu, Zezhang Zhu, Xi Chen, Liang Xu, and Xu Sun

OBJECTIVE

Although the vertical expandable prosthetic titanium rib (VEPTR) and growing rod instrumentation (GRI) encourage spinal growth via regular lengthening, they can create different results because of their different fixation patterns and mechanisms in correcting scoliosis. Previous studies have focused comparisons on coronal plane deformity with minimal attention to the sagittal profile. In this retrospective study, the authors aimed to compare the evolution of the sagittal spinal profile in early-onset scoliosis (EOS) treated with VEPTR versus GRI.

METHODS

The data for 11 patients with VEPTR and 22 with GRI were reviewed. All patients had more than 2 years’ follow-up with more than 2 lengthening procedures. Radiographic measurements were performed before and after the index surgery and at the latest follow-up. The complications in both groups were recorded.

RESULTS

Patients in both groups had similar diagnoses, age at the index surgery, and number of lengthening procedures. The changes in the major coronal Cobb angle and T1–S1 spinal height were not significantly different between the 2 groups. Compared with the GRI group, the VEPTR group had less correction in thoracic kyphosis (23% ± 12% vs 44% ± 16%, p < 0.001) after the index surgery and experienced a greater correction loss in thoracic kyphosis (46% ± 18% vs 11% ± 8%, p < 0.001) at the latest follow-up. Although the increase in the proximal junctional angle was not significantly different (VEPTR: 7° ± 4° vs GRI: 8° ± 5°, p = 0.569), the incidence of proximal junctional kyphosis was relatively lower in the VEPTR group (VEPTR: 18.2% vs GRI: 22.7%). No significant changes in the spinopelvic parameters were observed, while the sagittal vertical axis showed a tendency toward a neutral position in both groups. The overall complication rate was higher in the VEPTR group than in the GRI group (72.7% vs 54.5%).

CONCLUSIONS

The VEPTR had coronal correction and spinal growth results similar to those with GRI. In the sagittal plane, however, the VEPTR was not comparable to the GRI in controlling thoracic kyphosis. Thus, for hyperkyphotic EOS patients, GRI is recommended over VEPTR.

Restricted access

Cheng-Loong Liang, Chun-Chung Lui, Kang Lu, Tao-Chen Lee, and Han-Jung Chen

✓ The authors describe a patient with ossiculum terminale. Thin-section three-dimensional computerized tomography reconstructions, magnetic resonance images, and radiographs of the cervical spine were obtained to evaluate the atlantoaxial stability and structures of the ossiculum terminale. Bone had formed between the ossicles and the body of the odontoid process, and good atlantoaxial stability was clearly demonstrated.

Full access

Liang Xu, Zhonghui Chen, Yong Qiu, Xi Chen, Song Li, Changzhi Du, Qingshuang Zhou, and Xu Sun

OBJECTIVE

As scoliosis in arthrogryposis multiplex congenita (AMC) is unusual and the number of cases reviewed in previous studies is also relatively small, no previous study exists that has directly compared the results of spinal deformity correction between AMC and adolescent idiopathic scoliosis (AIS) patients. The aim of this study was to compare the radiographic and clinical outcomes of surgical correction of spinal deformity associated with AMC versus AIS.

METHODS

Twenty-four adolescents with AMC were matched with 48 AIS patients in terms of Cobb angle of main curve, curve pattern, sex, age at surgery, Risser grade, and length of follow-up. Patients in both groups underwent posterior-only spinal correction and fusion procedures. The surgical outcomes and complications were analyzed and compared between the 2 groups.

RESULTS

In comparison to the AIS group, the AMC group had a significantly longer mean operation time (5.6 vs 4.4 hours, p = 0.002), more blood loss (1620 ± 250 ml vs 840 ± 260 ml, p < 0.001), and more fusion levels (14.1 ± 2.3 levels vs 12.4 ± 2.5 levels, p = 0.007) as well as a lower correction rate (44.3% ± 11.1% vs 70.8% ± 12.4%, p < 0.001) and a higher rate of loss of correction (5.0% ± 3.1% vs 2.1% ± 1.9%, p < 0.001). Nine patients in the AMC group had preoperative pelvic obliquity, which was corrected from a mean of 14.2° ± 8.4° to a mean of 4.3° ± 3.2° (p < 0.001) after the surgery. The thoracic lordosis and sagittal vertical axis were significantly improved in the AMC group. Notably, however, the AMC group was found to have higher rates of screw malpositioning (15.9% vs 9.5%, p = 0.002) and complications (8/24 [33.3%] vs 4/48 [8.3%], p = 0.016) as compared to the AIS group.

CONCLUSIONS

Correction of AMC-associated scoliosis tends to require a longer operating time and involve more fusion levels but results in less correction, more blood loss, and more complications, in comparison with AIS. In addition, more attention should be paid to pelvic obliquity and sagittal hyperlordosis in AMC patients.