Search Results

You are looking at 1 - 10 of 21 items for

  • Author or Editor: Lawrence G. Lenke x
Clear All Modify Search
Full access

Ian G. Dorward and Lawrence G. Lenke

In addressing adult spinal deformities through a posterior approach, the surgeon now may choose from among a variety of osteotomy techniques. The Ponte or Smith-Petersen osteotomy provides the least correction, but it can be used at multiple levels with minimal blood loss and a lower operative risk. Pedicle subtraction osteotomies provide nearly 3 times the per-level correction of Ponte/Smith-Petersen osteotomies but carry increased technical demands, longer operative time, and greater blood loss and associated morbidity. Vertebral column resections serve as the most powerful method, providing the most correction in the coronal and sagittal planes, but posing both the greatest technical challenge and the greatest risk to the patient in terms of possible neurological injury, operative time, and potential morbidity. The authors reviewed the literature relating to these osteotomy methods. They also provided case illustrations and suggestions for their proper application.

Full access

Fernando E. Silva and Lawrence G. Lenke

Degenerative scoliosis is a prevalent issue among the aging population. Controversy remains over the role of surgical intervention in patients with this disease. The authors discuss a suitable approach to help guide surgical treatment, including decompression, instrumented posterior spinal fusion, anterior spinal fusion, and osteotomy. These treatment options are based on clinical analysis, radiographic analysis of the mechanical stability of the deformity, given pain generators, and necessary sagittal balance. The high potential complication rates appear to be outweighed by the eventual successful clinical outcomes in patients suitable for operative intervention. This approach has had favorable outcomes and could help resolve the controversy.

Restricted access

Max S. Riley, Keith H. Bridwell, Lawrence G. Lenke, Jonathan Dalton and Michael P. Kelly

OBJECTIVE

Significant health-related quality of life (HRQOL) benefits have been observed for patients undergoing primary and revision adult spinal deformity (ASD) surgery. The purpose of this study was to report changes in HRQOL measures in a consecutive series of patients undergoing complex spinal reconstructive surgery, using Scoli-RISK-1 (SR-1) inclusion criteria.

METHODS

This was a single-center, retrospective cohort study. The SR-1 inclusion criteria were used to define patients with complex ASD treated between June 1, 2009, and June 1, 2011. Standard preoperative and perioperative data were collected, including the Scoliosis Research Society (SRS)–22r instrument. The HRQOL changes were evaluated at a minimum 2-year follow-up. Standardized forms were used to collect surgery-related complications data for all patients. Complications were defined as minor, transient major, or permanent major. Patients who achieved a minimum 2-year follow-up were included in the analysis.

RESULTS

Eighty-four patients meeting SR-1 criteria were identified. Baseline demographic and surgical data were available for 74/84 (88%) patients. Forty-seven of 74 (64%) patients met the additional HRQOL criteria with a minimum 2-year follow-up (mean follow-up 3.4 years, range 2–6.5 years). Twenty-one percent of patients underwent posterior fusion only, 40% of patients had a posterior column osteotomy, and 38% had a 3-column osteotomy. Seventy-five percent of patients underwent a revision procedure. Significant improvements were observed in all SRS-22r domains: Pain: +0.8 (p < 0.001); Self-Image: +1.4 (p < 0.001); Function: +0.46 (p < 0.001); Satisfaction: +1.6 (p < 0.001); and Mental Health: +0.28 (p = 0.04). With the exception of Mental Health, more than 50% of patients achieved a minimum clinically important difference (MCID) in SRS-22r domain scores (Mental Health: 20/47, 42.6%). A total of 65 complications occurred in 31 patients. This includes 29.8% (14/47) of patients who suffered a major complication and 17% (8/47) who suffered a postoperative neurological deficit, most commonly at the root level (10.6%, 5/47). Of the 8 patients who suffered a neurological deficit, 1 (13%) was able to achieve MCID in the SRS Function domain.

CONCLUSIONS

The majority of patients experienced clinically relevant improvement in SRS-22r HRQOL scores after complex ASD surgery. The greatest improvements were seen in the SRS Pain and SRS Self-Image domains. Although 30% of patients suffered a major or permanent complication, benefits from surgery were still attained. Patients sustaining a neurological deficit or major complication were unlikely to achieve HRQOL improvements meeting or exceeding MCID for the SRS Function domain.

Free access

Justin S. Smith, Christopher I. Shaffrey, Christopher P. Ames and Lawrence G. Lenke

Care of the patient with adult spinal deformity (ASD) has evolved from being primarily supportive to now having the ability to directly treat and correct the spinal pathology. The focus of this narrative literature review is to briefly summarize the history of ASD treatment, discuss the current state of the art of ASD care with focus on surgical treatment and current challenges, and conclude with a discussion of potential developments related to ASD surgery.

In the past, care for ASD was primarily based on supportive measures, including braces and assistive devices, with few options for surgical treatments that were often deemed high risk and reserved for rare situations. Advances in anesthetic and critical care, surgical techniques, and instrumentation now enable almost routine surgery for many patients with ASD. Despite the advances, there are many remaining challenges currently impacting the care of ASD patients, including increasing numbers of elderly patients with greater comorbidities, high complication and reoperation rates, and high procedure cost without clearly demonstrated cost-effectiveness based on standard criteria. In addition, there remains considerable variability across multiple aspects of ASD surgery. For example, there is currently very limited ability to provide preoperative individualized counseling regarding optimal treatment approaches (e.g., operative vs nonoperative), complication risks with surgery, durability of surgery, and likelihood of achieving individualized patient goals and satisfaction. Despite the challenges associated with the current state-of-the-art ASD treatment, surgery continues to be a primary option, as multiple reports have demonstrated the potential for surgery to significantly improve pain and disability. The future of ASD care will likely include techniques and technologies to markedly reduce complication rates, including greater use of navigation and robotics, and a shift toward individualized medicine that enables improved counseling, preoperative planning, procedure safety, and patient satisfaction.

Advances in the care of ASD patients have been remarkable over the past few decades. The current state of the art enables almost routine surgical treatment for many types of ASD that have the potential to significantly improve pain and disability. However, significant challenges remain, including high complication rates, lack of demonstrated cost-effectiveness, and limited ability to meaningfully counsel patients preoperatively on an individual basis. The future of ASD surgery will require continued improvement of predictability, safety, and sustainability.

Free access

Brian J. Kelley, Anas A. Minkara, Peter D. Angevine, Michael G. Vitale, Lawrence G. Lenke and Richard C. E. Anderson

OBJECTIVE

The long-term effects of instrumentation and fusion of the occipital-cervical-thoracic spine on spinal growth in young children are poorly understood. To mitigate the effects of this surgery on the growing pediatric spine, the authors report a novel technique used in 4 children with severe cervical-thoracic instability. These patients underwent instrumentation from the occiput to the upper thoracic region for stabilization, but without bone graft at the craniovertebral junction (CVJ). Subsequent surgery was then performed to remove the occipital instrumentation, thereby allowing further growth and increased motion across the CVJ.

METHODS

Three very young children (15, 30, and 30 months old) underwent occipital to thoracic posterior segmental instrumentation due to cervical or upper thoracic dislocation, progressive kyphosis, and myelopathy. The fourth child (10 years old) underwent similar instrumentation for progressive cervical-thoracic scoliosis. Bone graft was placed at and distal to C-2 only. After follow-up CT scans demonstrated posterior arthrodesis without unintended fusion from the occiput to C-2, 3 patients underwent removal of the occipital instrumentation.

RESULTS

Follow-up cervical spine flexion/extension radiographs demonstrated partial restoration of motion at the CVJ. One patient has not had the occipital instrumentation removed yet, because only 4 months have elapsed since her operation.

CONCLUSIONS

Temporary fixation to the occiput provides increased biomechanical stability for spinal stabilization in young children, without permanently eliminating motion and growth at the CVJ. This technique can be considered in children who require longer instrumentation constructs for temporary stabilization, but who only need fusion in more limited areas where spinal instability exists.

Free access

Lawrence G. Lenke

Full access

Lawrence G. Lenke

Restricted access

James D. Lin, Chao Wei, Jamal N. Shillingford, Eduardo C. Beauchamp, Lee A. Tan, Yongjung J. Kim, Ronald A. Lehman Jr. and Lawrence G. Lenke

OBJECTIVE

To demonstrate that a more ventral starting point for thoracic pedicle screw insertion, produced by aggressively removing the dorsal transverse process bone down to the superior articular facet (SAF), results in a larger margin for error and more medial screw angulation compared to the traditional dorsal starting point (DSP). The margin for error will be quantified by the maximal insertional arc (MIA).

METHODS

The study population included 10 consecutive operative patients with adult idiopathic scoliosis who underwent primary surgery. All measurements were performed using 3D visualization software by an attending spine surgeon. The screw starting points were 2 mm lateral to the midline of the SAF in the mediolateral direction and in the center of the pedicle in the cephalocaudal direction. The DSP was on the dorsal cortex. The ventral starting point (VSP) was at the depth of the SAF. Measurements included distance to the pedicle isthmus, MIA, and screw trajectories.

RESULTS

Ten patients and 110 vertebral levels (T1–11) were measured. The patients’ average age was 41.4 years (range 18–64 years). The pedicle isthmus was largest at T1 (4.04 ± 1.09 mm), and smallest at T5 (1.05 ± 0.93 mm). The distance to the pedicle isthmus was 7.47 mm for the VSP and 11.92 mm for the DSP (p < 0.001). The MIA was 15.3° for the VSP and 10.1° for the DSP (p < 0.001). Screw angulation was 21.7° for the VSP and 16.8° for the DSP (p < 0.001).

CONCLUSIONS

A more ventral starting point for thoracic pedicle screws results in increased MIA and more medial screw angulation. The increased MIA represents an increased tolerance for error that should improve the safety of pedicle screw placement. More medial screw angulation allows improved triangulation of pedicle screws.

Restricted access

Yong-Chan Kim, Ji Hao Cui, Ki-Tack Kim, Gyu-Taek Park, Keun-Ho Lee, Sung-Min Kim and Lawrence G. Lenke

OBJECTIVE

In this study, the authors’ goal was to develop and validate novel radiographic parameters that better describe total body sagittal alignment (TBSA).

METHODS

One hundred sixty-six consecutive operative spinal deformity patients were evaluated using full-body stereoradiographic imaging. Seven TBSA parameters were measured and then correlated to 6 commonly used spinopelvic measurements. TBSA measures consisted of 4 distance measures relating the cranial center of mass (CCOM) to the sacrum, hips, knees, and ankles, and 3 angular measures relating the CCOM to the hips, knees, and ankles. Furthermore, each TBSA parameter was correlated to patient-reported outcome (PRO) scores using the Oswestry Disability Index (ODI) and Scoliosis Research Society–22 (SRS-22) instruments. Thirty patients were randomly selected for inter- and intraobserver reliability testing of the TBSA parameters using intraclass correlation coefficients (ICCs).

RESULTS

All TBSA radiographic parameters demonstrated strong linear correlation with the currently accepted primary measure of sagittal balance, the C7 sagittal vertical axis (r = 0.55–0.96, p < 0.001). Moreover, 5 of 7 TBSA measures correlated strongly with ODI and SRS-22 total scores (r = 0.42–0.51, p < 0.001). Inter- and intraobserver reliability for all TBSA measures was good to excellent (interrater ICC = 0.70–0.98, intrarater ICC = 0.77–1.0).

CONCLUSIONS

In spine deformity patients, novel TBSA radiographic parameters correlated well with PROs and with currently utilized spinal sagittal measurements. Inter- and intrarater reliability was high for these novel parameters. This is the first study to propose a reliable method for measuring head-to-toe global spinal alignment.

Full access

Michael P. Kelly, Lawrence G. Lenke, Jakub Godzik, Ferran Pellise, Christopher I. Shaffrey, Justin S. Smith, Stephen J. Lewis, Christopher P. Ames, Leah Y. Carreon, Michael G. Fehlings, Frank Schwab and Adam L. Shimer

OBJECTIVE

The authors conducted a study to compare neurological deficit rates associated with complex adult spinal deformity (ASD) surgery when recorded in retrospective and prospective studies. Retrospective studies may underreport neurological deficits due to selection, detection, and recall biases. Prospective studies are expensive and more difficult to perform, but they likely provide more accurate estimates of new neurological deficit rates.

METHODS

New neurological deficits were recorded in a prospective study of complex ASD surgeries (pSR1) with a defined outcomes measure (decrement in American Spinal Injury Association lower-extremity motor score) for neurological deficits. Using identical inclusion criteria and a subset of participating surgeons, a retrospective study was created (rSR1) and neurological deficit rates were collected. Continuous variables were compared with the Student t-test, with correction for multiple comparisons. Neurological deficit rates were compared using the Mantel-Haenszel method for standardized risks. Statistical significance for the primary outcome measure was p < 0.05.

RESULTS

Overall, 272 patients were enrolled in pSR1 and 207 patients were enrolled in rSR1. Inclusion criteria, defining complex spinal deformities, and exclusion criteria were identical. Sagittal Cobb measurements were higher in pSR1, although sagittal alignment was similar. Preoperative neurological deficit rates were similar in the groups. Three-column osteotomies were more common in pSR1, particularly vertebral column resection. New neurological deficits were more common in pSR1 (pSR1 17.3% [95% CI 12.6–22.2] and rSR1 9.0% [95% CI 5.0–13.0]; p = 0.01). The majority of deficits in both studies were at the nerve root level, and the distribution of level of injury was similar.

CONCLUSIONS

New neurological deficit rates were nearly twice as high in the prospective study than the retrospective study with identical inclusion criteria. These findings validate concerns regarding retrospective cohort studies and confirm the need for and value of carefully designed prospective, observational cohort studies in ASD.