Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Laurence Masson-Côté x
Clear All Modify Search
Free access

Christian Iorio-Morin, Laurence Masson-Côté, Youssef Ezahr, Jocelyn Blanchard, Annie Ebacher and David Mathieu

Object

Optimal case management after surgical removal of brain metastasis remains controversial. Although postoperative whole-brain radiation therapy (WBRT) has been shown to prevent local recurrence and decrease deaths, this modality can substantially decrease neurocognitive function and quality of life. Stereotactic radiosurgery (SRS) can theoretically achieve the same level of local control with fewer side effects, although studies conclusively demonstrating such outcomes are lacking. To assess the effectiveness and safety profile of tumor bed SRS after resection of brain metastasis, the authors performed a retrospective analysis of 110 patients who had received such treatment at the Centre Hospitalier Universitaire de Sherbrooke. They designed the study to identify risk factors for local recurrence and placed special emphasis on factors that could potentially be addressed.

Methods

Patients who had received treatment from 2004 through 2013 were included if they had undergone surgical removal of 1 or more brain metastases and if the tumor bed was treated by SRS regardless of the extent of resection or prior WBRT. All cases were retrospectively analyzed for patient and tumor-specific factors, treatment protocol, adverse outcomes, cavity outcomes, and survival for as long as follow-up was available. Univariate and multivariate Cox regression analyses were performed to identify risk factors for local recurrence and predictors of increased survival times.

Results

Median patient age at first SRS treatment was 58 years (range 37–84 years). The most frequently diagnosed primary tumor was non–small cell lung cancer. The rate of gross-total resection was 81%. The median Karnofsky Performance Scale score was 90%. Tumor bed SRS was performed at a median of 3 weeks after surgery. Median follow-up and survival times were 10 and 11 months, respectively. Actuarial local control of the cavity at 12 months was 73%; median time to recurrence was 6 months. According to multivariate analysis, risk factors for recurrence were a longer surgery-to-SRS delay (HR 1.625, p = 0.003) and a lower maximum radiation dose delivered to the cavity (HR 0.817, p = 0.006). Factors not associated with increased recurrence were subtotal or piecemeal resections, prior WBRT, histology of the primary tumor, and larger cavity volume. No factors predictive of survival were identified. Symptomatic radiation-induced enhancement occurred in 6% of patients and leptomeningeal dissemination in 11%. Pathologically confirmed radiation-induced necrosis occurred in 1 (0.9%) patient.

Conclusions

Adjuvant tumor bed SRS after the resection of brain metastasis is a valuable alternative to adjuvant WBRT. Risk factors for local recurrence are lower maximum radiation dose and a surgery-to-SRS delay longer than 3 weeks. Outcomes were not worse for patients who had undergone prior WBRT and subtotal or piecemeal resections. Pending the results of prospective randomized controlled trials, the authors' study supports the safety and efficacy of adjuvant SRS after resection of brain metastasis. SRS should be performed as early as possible, ideally within 3 weeks of the surgery.

Full access

Isabelle Thibault, Ameen Al-Omair, Giuseppina Laura Masucci, Laurence Masson-Côté, Fiona Lochray, Renée Korol, Lu Cheng, Wei Xu, Albert Yee, Michael G. Fehlings, Georg A. Bjarnason and Arjun Sahgal

Object

The aim of this study was to evaluate local control (LC) and the risk of vertebral compression fracture (VCF) after stereotactic body radiotherapy (SBRT) in patients with renal cell cancer spinal metastases.

Methods

Prospectively collected data on 71 spinal segments treated with SBRT in 37 patients were reviewed. The median follow-up was 12.3 months (range 1.2–55.4 months). The LC rate was assessed based on each spinal segment treated and overall survival (OS) according to each patient treated. Sixty of 71 segments (85%) were radiation naive, 11 of 71 (15%) were previously irradiated, and 10 of 71 (14%) were treated with postoperative SBRT. The median SBRT total dose and number of fractions were 24 Gy and 2, respectively. The VCF analysis also included evaluation of the Spinal Instability Neoplastic Score criteria.

Results

The 1-year OS and LC rates were 64% and 83%, respectively. Multivariate analysis identified oligometastatic disease (13 of 37 patients) as a positive prognostic factor (p = 0.018) for OS. Of 61 non-postoperative spinal segments treated, 10 (16%) developed VCFs; 3 of 10 were de novo VCFs and 7 of 10 occurred as progression of an existing VCF. The 1-year VCF-free probability rate was 82%. Multivariate analysis identified single-fraction SBRT and baseline VCF as significant predictors of SBRT-induced VCF (p = 0.028 and p = 0.012, respectively).

Conclusions

Spine SBRT yields high rates of local tumor control in patients with renal cell cancer. Baseline VCF and 18–24 Gy delivered in a single fraction were predictive of further collapse. Patients with oligometastatic disease may benefit most from such aggressive local therapy, given the prolonged survival observed.