Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Laurence Martineau x
Clear All Modify Search
Restricted access

Alain Bouthillier, Alexander G. Weil, Laurence Martineau, Laurent Létourneau-Guillon and Dang Khoa Nguyen

OBJECTIVE

Operculoinsular cortectomy (also termed operculoinsulectomy) is increasingly recognized as a therapeutic option for perisylvian refractory epilepsy. However, most neurosurgeons are reluctant to perform the technique because of previously experienced or feared neurological complications. The goal of this study was to quantify the incidence of basic neurological complications (loss of primary nonneuropsychological functions) associated with operculoinsular cortectomies for refractory epilepsy, and to identify factors predicting these complications.

METHODS

Clinical, imaging, and surgical data of all patients investigated and surgically treated by our team for refractory epilepsy requiring an operculoinsular cortectomy were retrospectively reviewed. Patients with tumors and encephalitis were excluded. Logistic regression analysis was used for uni- and multivariate statistical analyses.

RESULTS

Forty-four operculoinsular cortectomies were performed in 43 patients. Although postoperative neurological deficits were frequent (54.5% of procedures), only 3 procedures were associated with a permanent significant neurological deficit. Out of the 3 permanent deficits, only 1 (2.3%; a sensorimotor hemisyndrome) was related to the technique of operculoinsular cortectomy (injury to a middle cerebral artery branch), while the other 2 (arm hypoesthesia and hemianopia) were attributed to cortical resection beyond the operculoinsular area. With multivariate analysis, a postoperative neurological deficit was associated with preoperative insular hypometabolism on PET scan. Postoperative motor deficit (29.6% of procedures) was correlated with fewer years of neurosurgical experience and frontal operculectomies, but not with corona radiata ischemic lesions. Ischemic lesions in the posterior two-thirds of the corona radiata (40.9% of procedures) were associated with parietal operculectomies, but not with posterior insulectomies.

CONCLUSIONS

Operculoinsular cortectomy for refractory epilepsy is a relatively safe therapeutic option but temporary neurological deficits after surgery are frequent. This study highlights the role of frontal/parietal opercula resections in postoperative complications. Corona radiata ischemic lesions are not clearly related to motor deficits. There were no obvious permanent neurological consequences of losing a part of an epileptic insula, including on the dominant side for language. A low complication rate can be achieved if the following conditions are met: 1) microsurgical technique is applied to spare cortical branches of the middle cerebral artery; 2) the resection of an opercula is done only if the opercula is part of the epileptic focus; and 3) the neurosurgeon involved has proper training and experience.

Restricted access

Alain Bouthillier, Alexander G. Weil, Laurence Martineau, Laurent Létourneau-Guillon and Dang Khoa Nguyen

OBJECTIVE

Patients with refractory epilepsy of operculoinsular origin are often denied potentially effective surgical treatment with operculoinsular cortectomy (also termed operculoinsulectomy) because of feared complications and the paucity of surgical series with a significant number of cases documenting seizure control outcome. The goal of this study was to document seizure control outcome after operculoinsular cortectomy in a group of patients investigated and treated by an epilepsy team with 20 years of experience with this specific technique.

METHODS

Clinical, imaging, surgical, and seizure control outcome data of all patients who underwent surgery for refractory epilepsy requiring an operculoinsular cortectomy were retrospectively reviewed. Tumors and progressive encephalitis cases were excluded. Descriptive and uni- and multivariate analyses were done to determine seizure control outcome and predictors.

RESULTS

Forty-three patients with 44 operculoinsular cortectomies were studied. Kaplan-Meier estimates of complete seizure freedom (first seizure recurrence excluding auras) for years 0.5, 1, 2, and 5 were 70.2%, 70.2%, 65.0%, and 65.0%, respectively. With patients with more than 1 year of follow-up, seizure control outcome Engel class I was achieved in 76.9% (mean follow-up duration 5.8 years; range 1.25–20 years). With multivariate analysis, unfavorable seizure outcome predictors were frontal lobe–like seizure semiology, shorter duration of epilepsy, and the use of intracranial electrodes for invasive monitoring. Suspected causes of recurrent seizures were sparing of the language cortex part of the focus, subtotal resection of cortical dysplasia/polymicrogyria, bilateral epilepsy, and residual epileptic cortex with normal preoperative MRI studies (insula, frontal lobe, posterior parieto-temporal, orbitofrontal).

CONCLUSIONS

The surgical treatment of operculoinsular refractory epilepsy is as effective as epilepsy surgeries in other brain areas. These patients should be referred to centers with appropriate experience. A frontal lobe–like seizure semiology should command more sampling with invasive monitoring. Recordings with intracranial electrodes are not always required if the noninvasive investigation is conclusive. The complete resection of the epileptic zone is crucial to achieve good seizure control outcome.

Restricted access

Pauline Cuisenier, Bénédicte Testud, Lorella Minotti, Samuel El Bouzaïdi Tiali, Laurence Martineau, Anne-Sophie Job, Agnès Trébuchon, Pierre Deman, Manik Bhattacharjee, Dominique Hoffmann, Jean-Philippe Lachaux, Monica Baciu, Philippe Kahane and Marcela Perrone-Bertolotti

OBJECTIVE

The authors assessed the clinical relevance of preoperative task-induced high-frequency activity (HFA) for language mapping in patients with refractory epilepsy during stereoelectroencephalography recording. Although HFA evaluation was described as a putative biomarker of cognition, its clinical relevance for mapping language networks was assessed predominantly by studies using electrocorticography (ECOG).

METHODS

Forty-two patients with epilepsy who underwent intracranial electrode implantation during both task-induced HFA and direct cortical stimulation (DCS) language mapping were evaluated. The spatial and functional relevance of each method in terms of specificity and sensitivity were evaluated.

RESULTS

The results showed that the two methods were able to map classic language regions, and a large and bilateral language network was obtained with induced HFA. At a regional level, differences were observed between methods for parietal and temporal lobes: HFA recruited a larger number of cortical parietal sites, while DCS involved more cortical temporal sites. Importantly, the results showed that HFA predicts language interference induced by DCS with high specificity (92.4%; negative predictive value 95.9%) and very low sensitivity (8.9%; positive predictive value 4.8%).

CONCLUSIONS

DCS language mapping appears to be more appropriate for an extensive temporal mapping than induced HFA mapping. Furthermore, induced HFA should be used as a complement to DCS to preselect the number of stimulated sites during DCS, by omitting those reported as HFA−. This may be a considerable advantage because it allows a reduction in the duration of the stimulation procedure. Several parameters to be used for each method are discussed and the results are interpreted in relation to previous results reported in ECOG studies.