Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: Kristopher G. Hooten x
Clear All Modify Search
Free access

Kimberly B. Hoang, Kristopher G. Hooten and Carrie R. Muh

Idiopathic intracranial hypertension (IIH), formerly known as pseudotumor cerebri, is a disease of elevated intracranial pressure that is thought to develop due to impaired CSF absorption related to elevated venous sinus pressure in the setting of increased intraabdominal and thoracic pressures. Symptoms can be disabling and, if left untreated, can lead to permanent visual loss. Previous treatments directed toward vision preservation include CSF diversion through shunting and optic nerve sheath fenestration. Recently, attention has been turned toward surgical weight loss strategies as an alternative to shunt treatment. The authors present a report of 3 patients with adolescent-onset IIH that was treated at the authors’ institution (Duke University) in whom bariatric surgery was pursued successfully. The patients had previously undergone CSF shunting at ages 12, 15, and 23 years. They were shunt dependent for a collective average of 3.3 years prior to bariatriwc surgery. All patients reported “low-pressure” or postural headaches after bariatric surgery that correlated with dramatic reduction in their weight. Two of the 3 patients had their shunts removed and continued to be shunt free 1.5 years later at last follow-up; the third patient remained shunt dependent with the pressure set at 200 mm H2O. Given the significant complications inherent to multiple shunt revisions, earlier intervention for weight loss, including bariatric surgery, in these patients might have prevented complications and the associated health care burden. The authors recommend a multidisciplinary approach for IIH treatment with early consideration for weight loss interventions in select patients.

Restricted access

Kristopher G. Hooten, Klaus Werner, Mohamad A. Mikati and Carrie R. Muh

Cortical tubers associated with tuberous sclerosis complex (TSC) are potential epileptic foci that are often amenable to resective or ablative surgeries, and controlling seizures at a younger age may lead to improved functional outcomes. MRI-guided laser interstitial thermal therapy (MRgLITT) has become a popular minimally invasive alternative to traditional craniotomy. Benefits of MRgLITT include the ability to monitor the ablation in real time, a smaller incision, shorter hospital stay, reduced blood loss, and reduced postoperative pain. To place the laser probe for LITT, however, stereotaxy is required—which classically involves head fixation with cranial pins. This creates a relative minimum age limit of 2 years old because it demands a mature skull and fused cranial sutures. A novel technique is presented for the application of MRgLITT in a 6-month-old infant for the treatment of epilepsy associated with TSC. To the authors’ knowledge this is the youngest patient treated with laser ablation. The authors used a frameless navigation technique with a miniframe tripod system and intraoperative reference points. This technique expands the application of MRgLITT to younger patients, which may lead to safer surgical interventions and improved outcomes for these children.

Full access

Kristopher G. Hooten, Seth F. Oliveria, Shawn D. Larson and David W. Pincus

Ogilvie's syndrome is a rare and potentially fatal disease that can easily be mistaken for postoperative ileus. Also known as acute colonic pseudo-obstruction, early recognition and diagnosis of the syndrome allows for treatment prior to bowel perforation and requisite abdominal surgery. The authors report a case of Ogilvie's syndrome following spinal deformity correction and tethered cord release in an adolescent who presented with acute abdominal distension, nausea, and vomiting on postoperative Day 0. The patient was initially diagnosed with adynamic ileus and treated conservatively with bowel rest, reduction in narcotic dosage, and a regimen of stool softeners, laxatives, and enemas. Despite this treatment, her clinical course failed to improve, and she demonstrated significant colonic distension radiographically. Intravenous neostigmine was administered as a bolus with a rapid and dramatic response. This case is the first reported instance of neostigmine use for Ogilvie's syndrome treatment following a pediatric neurosurgical operation.

Restricted access

Kristopher G. Hooten, Klaus Werner, Mohamad A. Mikati and Carrie R. Muh

Cortical tubers associated with tuberous sclerosis complex (TSC) are potential epileptic foci that are often amenable to resective or ablative surgeries, and controlling seizures at a younger age may lead to improved functional outcomes. MRI-guided laser interstitial thermal therapy (MRgLITT) has become a popular minimally invasive alternative to traditional craniotomy. Benefits of MRgLITT include the ability to monitor the ablation in real time, a smaller incision, shorter hospital stay, reduced blood loss, and reduced postoperative pain. To place the laser probe for LITT, however, stereotaxy is required—which classically involves head fixation with cranial pins. This creates a relative minimum age limit of 2 years old because it demands a mature skull and fused cranial sutures. A novel technique is presented for the application of MRgLITT in a 6-month-old infant for the treatment of epilepsy associated with TSC. To the authors’ knowledge this is the youngest patient treated with laser ablation. The authors used a frameless navigation technique with a miniframe tripod system and intraoperative reference points. This technique expands the application of MRgLITT to younger patients, which may lead to safer surgical interventions and improved outcomes for these children.

Free access

David H. Shin, Kristopher G. Hooten, Brian D. Sindelar, Brian M. Corliss, William R. Y. Carlton Jr., Christopher P. Carroll, Jeffrey M. Tomlin and W. Christopher Fox

Military neurosurgery has played an integral role in the development and innovation of neurosurgery and neurocritical care in treating battlefield injuries. It is of paramount importance to continue to train and prepare the next generation of military neurosurgeons. For the Army, this is currently primarily achieved through the military neurosurgery residency at the National Capital Consortium and through full-time out-service positions at the Veterans Affairs–Department of Defense partnerships with the University of Florida, the University of Texas–San Antonio, and Baylor University. The authors describe the application process for military neurosurgery residency and highlight the training imparted to residents in a busy academic and level I trauma center at the University of Florida, with a focus on how case variety and volume at this particular civilian-partnered institution produces neurosurgeons who are prepared for the complexities of the battlefield. Further emphasis is also placed on collaboration for research as well as continuing education to maintain the skills of nondeployed neurosurgeons. With ongoing uncertainty regarding future conflict, it is critical to preserve and expand these civilian-military partnerships to maintain a standard level of readiness in order to face the unknown with the confidence befitting a military neurosurgeon.

Full access

Griffin R. Baum, Kristopher G. Hooten, Dennis T. Lockney, Kyle M. Fargen, Nefize Turan, Gustavo Pradilla, Gregory J. A. Murad, Robert E. Harbaugh, Michael Glantz and The EVD Best Practice Team

OBJECTIVE

While guidelines exist for many neurosurgical procedures, external ventricular drain (EVD) insertion has yet to be standardized. The goal of this study was to survey the neurosurgical community and determine the most frequent EVD insertion practices. The hypothesis was that there would be no standard practices identified for EVD insertion or methods to avoid EVD-associated infections.

METHODS

The American Association of Neurological Surgeons membership database was queried for all eligible neurosurgeons. A 16-question, multiple-choice format survey was created and sent to 7217 recipients. The responses were collected electronically, and the descriptive results were tabulated. Data were analyzed using the chi-square test.

RESULTS

In total, 1143 respondents (15.8%) completed the survey, and 705 respondents (61.6%) reported tracking EVD infections at their institution. The most common self-reported infection rate ranged from 1% to 3% (56.1% of participants), and 19.7% of respondents reported a 0% infection rate. In total, 451 respondents (42.7%) indicated that their institution utilizes a formal protocol for EVD placement. If a respondent's institution had a protocol, only 258 respondents (36.1%) always complied with the protocol. Protocol utilization for EVD insertion was significantly more frequent among residents, in academic/hybrid centers, in ICU settings, and if the institution tracked EVD-associated infection rates (p < 0.05). A self-reported 0% infection rate was significantly more commonly associated with a higher level of training (e.g., attending physicians), private center settings, a clinician performing 6 to 10 EVD insertions within the previous 12 months, and prophylactic continuous antibiotic utilization (p < 0.05).

CONCLUSIONS

This survey demonstrated heterogeneity in the practices for EVD insertion. No standard practices have been proposed or adopted by the neurosurgical community for EVD insertion or complication avoidance. These results highlight the need for the nationwide standardization of technique and complication prevention measures.

Full access

Benjamin C. Kennedy, Randy S. D’Amico, Brett E. Youngerman, Michael M. McDowell, Kristopher G. Hooten, Daniel Couture, Andrew Jea, Jeffrey Leonard, Sean M. Lew, David W. Pincus, Luis Rodriguez, Gerald F. Tuite, Michael L. Diluna, Douglas L. Brockmeyer, Richard C. E. Anderson and Pediatric Craniocervical Society

OBJECT

The long-term consequences of atlantoaxial (AA) and occipitocervical (OC) fusion and instrumentation in young children are unknown. Anecdotal reports have raised concerns regarding altered growth and alignment of the cervical spine after surgical intervention. The purpose of this study was to determine the long-term effects of these surgeries on the growth and alignment of the maturing spine.

METHODS

A multiinstitutional retrospective chart review was conducted for patients less than or equal to 6 years of age who underwent OC or AA fusion with rigid instrumentation at 9 participating centers. All patients had at least 3 years of clinical and radiographic follow-up data and radiographically confirmed fusion. Preoperative, immediate postoperative, and most recent follow-up radiographs and/or CT scans were evaluated to assess changes in spinal growth and alignment.

RESULTS

Forty children (9 who underwent AA fusion and 31 who underwent OC fusion) were included in the study (mean follow-up duration 56 months). The mean vertical growth over the fused levels in the AA fusion patients represented 30% of the growth of the cervical spine (range 10%–50%). Three different vertical growth patterns of the fusion construct developed among the 31 OC fusion patients during the follow-up period: 1) 16 patients had substantial growth (13%–46% of the total growth of the cervical spine); 2) 9 patients had no meaningful growth; and 3) 6 patients, most of whom presented with a distracted atlantooccipital dislocation, had a decrease in the height of the fused levels (range 7–23 mm). Regarding spinal alignment, 85% (34/40) of the patients had good alignment at follow-up, with straight or mildly lordotic cervical curvatures. In 1 AA fusion patient (11%) and 5 OC fusion patients (16%), we observed new hyperlordosis (range 43°–62°). There were no cases of new kyphosis or swan-neck deformity, evidence of subaxial instability, or unintended subaxial fusion. No preoperative predictors of these growth patterns or alignment were evident.

CONCLUSIONS

These results demonstrate that most young children undergoing AA and OC fusion with rigid internal fixation continue to have good cervical alignment and continued growth within the fused levels during a prolonged follow-up period. However, some variability in vertical growth and alignment exists, highlighting the need to continue close long-term follow-up.