Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: Kristina König x
  • All content x
Clear All Modify Search
Free access

Kevin Akeret, David Bellut, Hans-Jürgen Huppertz, Georgia Ramantani, Kristina König, Carlo Serra, Luca Regli, and Niklaus Krayenbühl

OBJECTIVE

Surgery has proven to be the best therapeutic option for drug-refractory cases of focal cortical dysplasia (FCD)–associated epilepsy. Seizure outcome primarily depends on the completeness of resection, rendering the intraoperative FCD identification and delineation particularly important. This study aims to assess the diagnostic yield of intraoperative ultrasound (IOUS) in surgery for FCD-associated drug-refractory epilepsy.

METHODS

The authors prospectively enrolled 15 consecutive patients with drug-refractory epilepsy who underwent an IOUS-assisted microsurgical resection of a radiologically suspected FCD between January 2013 and July 2016. The findings of IOUS were compared with those of presurgical MRI postprocessing and the sonographic characteristics were analyzed in relation to the histopathological findings. The authors investigated the added value of IOUS in achieving completeness of resection and improving postsurgical seizure outcome.

RESULTS

The neurosurgeon was able to identify the dysplastic tissue by IOUS in all cases. The visualization of FCD type I was more challenging compared to FCD II and the demarcation of its borders was less clear. Postsurgical MRI showed residual dysplasia in 2 of the 3 patients with FCD type I. In all FCD type II cases, IOUS allowed for a clear intraoperative visualization and demarcation, strongly correlating with presurgical MRI postprocessing. Postsurgical MRI confirmed complete resection in all FCD type II cases. Sonographic features correlated with the histopathological classification of dysplasia (sonographic abnormalities increase continuously in the following order: FCD IA/IB, FCD IC, FCD IIA, FCD IIB). In 1 patient with IOUS features atypical for FCD, histopathological investigation showed nonspecific gliosis.

CONCLUSIONS

Morphological features of FCD, as identified by IOUS, correlate well with advanced presurgical imaging. The resolution of IOUS was superior to MRI in all FCD types. The appreciation of distinct sonographic features on IOUS allows the intraoperative differentiation between FCD and non-FCD lesions as well as the discrimination of different histological subtypes of FCD. Sonographic demarcation depends on the underlying degree of dysplasia. IOUS allows for more tailored resections by facilitating the delineation of the dysplastic tissue.