Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Klaus Novak x
Clear All Modify Search
Full access

Karl F. Kothbauer and Klaus Novak

Object

Intraoperative neurophysiological recording techniques have found increasing use in neurosurgical practice. The development of new recording techniques feasible while the patient receives a general anesthetic have improved their practical use in a similar way to the use of digital recording, documentation, and video technology. This review intends to provide an update on the techniques used and their validity.

Methods

Two principal methods are used for intraoperative neurophysiological testing during tethered cord release. Mapping identifies functional neural structures, namely nerve roots, and monitoring provides continuous information on the functional integrity of motor and sensory pathways as well as reflex circuitry. Mapping is performed mostly by using direct electrical stimulation of a structure within the surgical field and recording at a distant site, usually a muscle. Sensory mapping can also be performed with peripheral stimulation and recording within the surgical site. Monitoring of the motor system is achieved with motor evoked potentials. These are evoked by transcranial electrical stimulation and recorded from limb muscles and the external anal sphincter. The presence or absence of muscle responses are the parameters monitored. Sensory potentials evoked by tibial or pudendal nerve stimulation and recorded from the dorsal columns via an epidurally inserted electrode and/or from the scalp as cortical responses are used to access the integrity of sensory pathways. Amplitudes and latencies of these responses are then interpreted. The bulbocavernosus reflex, with stimulation of the pudendal nerve and recording of muscle responses in the external anal sphincter, is used for continuous monitoring of the reflex circuitry. Presence or absence of this response is the pertinent parameter that is monitored.

Conclusions

Intraoperative neurophysiology provides a wide and reliable set of techniques for intraoperative identification of neural structures and continuous monitoring of their functional integrity.

Restricted access

Klaus Novak, Thomas Czech, Daniela Prayer, Wolfgang Dietrich, Wolfgang Serles, Stephan Lehr and Christoph Baumgartner

Object. The concept of selective amygdalohippocampectomy is based on pathophysiological insights into the epileptogenicity of the hippocampal region and the definition of the clinical syndrome of mesial temporal lobe epilepsy (TLE). High-resolution magnetic resonance (MR) imaging allows correlation of the site of histologically conspicuous tissue with anatomical structure. The highly variable sulcal pattern of the basal temporal lobe, however, definitely complicates the morphometric analysis of histomorphologically defined subdivisions of the hippocampal region. The goal of this study was to define individual variations in the sulcal anatomy on the basis of preoperative MR images obtained in patients suffering from TLE.

Methods. The authors analyzed coronal MR images obtained in 50 patients for the presence of and intrinsic relationships among the rhinal, collateral, and occipitotemporal sulci. The surface relief of consecutive sections of 100 temporal lobes was graphically outlined and the resulting maps were used for visual analysis. The sulci were characterized by measurement of their depth, distance to the temporal horn, and laterality. The anatomical measurements and frequencies of sulcal patterns were assessed for statistical correlation with patients' histories and the lateralization of the seizure focus.

Conclusions. Statistical assessment shows that patient sex is a significant factor in sulcal patterns. Anatomical measurements are significantly decreased on the side of the seizure origin, which relates to loss of white matter, a known morphological abnormality associated with TLE. Magnetic resonance imaging allows for accurate preoperative knowledge of individual sulcal patterns and facilitates intraoperative orientation to anatomical landmarks.

Restricted access

Klaus Novak, Georg Widhalm, Adauri Bueno de Camargo, Noel Perin, George Jallo, Engelbert Knosp and Vedran Deletis

Object

Thoracic idiopathic spinal cord herniation (TISCH) is a rare neurological disorder characterized by an incarceration of the spinal cord at the site of a ventral dural defect. The disorder is associated with clinical signs of progressive thoracic myelopathy. Surgery can withhold the natural clinical course, but surgical repair of the dural defect bears a significant risk of additional postoperative motor deficits, including permanent paraplegia. Intraoperative online information about the functional integrity of the spinal cord and warning signs about acute functional impairment of motor pathways could contribute to a lower risk of permanent postoperative motor deficit. Motor evoked potential (MEP) monitoring can instantly and reliably detect dysfunction of motor pathways in the spinal cord. The authors have applied MEPs during intraoperative neurophysiological monitoring (IOM) for surgical repair of TISCH and have correlated the results of IOM with its influence on the surgical procedure and with the functional postoperative outcome.

Methods

The authors retrospectively reviewed the intraoperative neurophysiological data and clinical records of 4 patients who underwent surgical treatment for TISCH in 3 institutions where IOM, including somatosensory evoked potentials and MEPs, is routinely used for spinal cord surgery. In all 4 patients the spinal cord was reduced from a posterior approach and the dural defect was repaired using a dural graft.

Results

Motor evoked potential monitoring was feasible in all patients. Significant intraoperative changes of MEPs were observed in 2 patients. The changes were detected within seconds after manipulation of the spinal cord. Monitoring of MEPs led to immediate revision of the placement of the dural graft in one case and to temporary cessation of the release of the incarcerated spinal cord in the other. Changes occurred selectively in MEPs and were reversible. In both patients, transient changes in intraoperative MEPs correlated with a reversible postoperative motor deficit. Patients without significant changes in somatosensory evoked potentials and MEPs demonstrated no additional neurological deficit postoperatively and showed improvement of motor function during follow-up.

Conclusions

Surgical repair of the dural defect is effected by release and reduction of the spinal cord and insertion of dural substitute over the dural defect. Careful monitoring of the functional integrity of spinal cord long tracts during surgical manipulation of the cord can detect surgically induced impairment. The authors' documentation of acute loss of MEPs that correlated with reversible postoperative motor deficit substantiates the necessity of IOM including continuous monitoring of MEPs for the surgical treatment of TISCH.

Free access

Matthias Millesi, Barbara Kiesel, Adelheid Woehrer, Johannes A. Hainfellner, Klaus Novak, Mauricio Martínez-Moreno, Stefan Wolfsberger, Engelbert Knosp and Georg Widhalm

Object

Subtotal resection (STR) of spinal tumors can result in tumor recurrence. Currently, no clinically reliable marker is available for intraoperative visualization of spinal tumor tissue. Protoporphyrin IX (PpIX) fluorescence induced by 5-aminolevulinic acid (5-ALA) is capable of visualizing malignant gliomas. Fluorescence-guided resections of malignant cerebral gliomas using 5-ALA have resulted in an increased rate of complete tumor removal. Recently, the application of 5-ALA has also been described in the first cases of spinal tumors. Therefore, the aim of this observational study was to systematically investigate 5-ALA–induced fluorescence characteristics in different spinal tumor entities.

Methods

Three hours before the induction of anesthesia, 5-ALA was administered to patients with different intra- and extradural spinal tumors. In all patients a neurosurgical resection or biopsy of the spinal tumor was performed under conventional white-light microscopy. During each surgery, the presence of PpIX fluorescence was additionally assessed using a modified neurosurgical microscope. At the end of an assumed gross-total resection (GTR) under white-light microscopy, a final inspection of the surgical cavity of fluorescing intramedullary tumors was performed to look for any remaining fluorescing foci. Histopathological tumor diagnosis was established according to the current WHO classification.

Results

Fifty-two patients with 55 spinal tumors were included in this study. Resection was performed in 50 of 55 cases, whereas 5 of 55 cases underwent biopsy. Gross-total resection was achieved in 37 cases, STR in 5, and partial resection in 8 cases. Protoporphyrin IX fluorescence was visible in 30 (55%) of 55 cases, but not in 25 (45%) of 55 cases. Positive PpIX fluorescence was mainly detected in ependymomas (12 of 12), meningiomas (12 of 12), hemangiopericytomas (3 of 3), and in drop metastases of primary CNS tumors (2 of 2). In contrast, none of the neurinomas (8 of 8), carcinoma metastases (5 of 5), and primary spinal gliomas (3 of 3; 1 pilocytic astrocytoma, 1 WHO Grade II astrocytoma, 1 WHO Grade III anaplastic oligoastrocytoma) revealed PpIX fluorescence. It is notable that residual fluorescing tumor foci were detected and subsequently resected in 4 of 8 intramedullary ependymomas despite assumed GTR under white-light microscopy.

Conclusions

In this study, 5-ALA–PpIX fluorescence was observed in spinal tumors, especially ependymomas, meningiomas, hemangiopericytomas, and drop metastases of primary CNS tumors. In cases of intramedullary tumors, 5-ALA–induced PpIX fluorescence is a useful tool for the detection of potential residual tumor foci.

Restricted access

Christian Dorfer, Thomas Czech, Susanne Aull-Watschinger, Christoph Baumgartner, Rebekka Jung, Gregor Kasprian, Klaus Novak, Susanne Pirker, Birgit Seidl, Harald Stefanits, Karin Trimmel and Ekaterina Pataraia

OBJECTIVE

The aim of this study was to present long-term seizure outcome data in a consecutive series of patients with refractory mesial temporal lobe epilepsy primarily treated with transsylvian selective amygdalohippocampectomy (SAHE).

METHODS

The authors retrospectively analyzed prospectively collected data for all patients who had undergone resective surgery for medically refractory epilepsy at their institution between July 1994 and December 2014. Seizure outcome was assessed according to the International League Against Epilepsy (ILAE) and the Engel classifications.

RESULTS

The authors performed an SAHE in 158 patients (78 males, 80 females; 73 right side, 85 left side) with a mean age of 37.1 ± 10.0 years at surgery. Four patients lost to follow-up and 1 patient who committed suicide were excluded from analysis. The mean follow-up period was 9.7 years. At the last available follow-up (or before reoperation), 68 patients (44.4%) had achieved an outcome classified as ILAE Class 1a, 46 patients (30.1%) Class 1, 6 patients (3.9%) Class 2, 16 patients (10.4%) Class 3, 15 patients (9.8%) Class 4, and 2 patients (1.3%) Class 5. These outcomes correspond to Engel Class I in 78.4% of the patients, Engel Class II in 10.5%, Engel Class III in 8.5%, and Engel Class IV in 2.0%. Eleven patients underwent a second surgery (anterior temporal lobectomy) after a mean of 4.4 years from the SAHE (left side in 6 patients, right side in 5). Eight (72.7%) of these 11 patients achieved seizure freedom.

The overall ILEA seizure outcome since (re)operation after a mean follow-up of 10.0 years was Class 1a in 72 patients (47.0%), Class 1 in 50 patients (32.6%), Class 2 in 7 patients (4.6%), Class 3 in 15 patients (9.8%), Class 4 in 8 patients (5.2%), and Class 5 in 1 patient (0.6%). These outcomes correspond to an Engel Class I outcome in 84.3% of the patients.

CONCLUSIONS

A satisfactory long-term seizure outcome following transsylvian SAHE was demonstrated in a selected group of patients with refractory temporal lobe epilepsy.

Free access

Christian Dorfer, Thomas Czech, Angelika Mühlebner-Fahrngruber, Aygül Mert, Gudrun Gröppel, Klaus Novak, Anastasia Dressler, Edith Reiter-Fink, Tatjana Traub-Weidinger and Martha Feucht

Object

Outcomes following functional hemispherotomy in patients with drug-resistant epilepsy have been well described. However, studies reporting long-term longitudinal outcomes after subhemispheric disconnective epilepsy surgery are still limited.

Methods

The authors conducted a retrospective review of prospectively collected data of 10 children who underwent temporoparietooccipital (TPO) disconnective surgery at the Vienna Pediatric Epilepsy Center.

Results

There were 3 males and 7 females (median age 8.7 years; range 4.2–22.1 years). The affected hemisphere was the left in 3 patients and the right in 7. The patients' median age at seizure onset was 3.0 years (range 0.2–8.3 years). The median duration of epilepsy before surgery was 5.2 years (range 1.3–17.2 years). The underlying pathology was TPO malformation of cortical development in 5 patients, and venous infarction, posterior hemispheric quadrant atrophy, Sturge-Weber syndrome, cortical involvement of a systemic lupus erythematosus, and gliosis after cerebral tumor treatment in 1 each. In 6 children, a pure TPO disconnection was performed; in 2 patients, the temporal lobe was resected and parietooccipital disconnection was performed. The 2 remaining patients had had previous epilepsy surgery that was extended to a TPO disconnection: disconnection of the occipital lobe (n = 1) and resection of the temporal lobe (n = 1). The authors encountered no complications while performing surgery. No patient needed blood replacement therapy. No patient developed CSF disturbances that warranted treatment. Nine of 10 patients are currently seizure free since surgery (Wieser Class 1a) at a median follow-up time of 2.1 years (range 4 months to 8.1 years).

Conclusions

Temporoparietooccipital disconnection is a safe and effective motor-sparing epilepsy surgery in selected cases. Technical adjuncts facilitate a better intraoperative visualization and orientation, thereby enabling a less invasive approach than previously suggested.