Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Kjell Arne Kvistad x
  • All content x
Clear All Modify Search
Restricted access

Toril Skandsen, Kjell Arne Kvistad, Ole Solheim, Ingrid Haavde Strand, Mari Folvik, and Anne Vik


In this prospective cohort study the authors examined patients with moderate to severe head injuries using MR imaging in the early phase. The objective was to explore the occurrence of diffuse axonal injury (DAI) and determine whether DAI was related to level of consciousness and patient outcome.


One hundred and fifty-nine patients (age range 5–65 years) with traumatic brain injury, who survived the acute phase, and who had a Glasgow Coma Scale (GCS) score of 3–13 were admitted between October 2004 and August 2008. Of these 159 patients, 106 were examined using MR imaging within 4 weeks postinjury. Patients were classified into 1 of 3 stages of DAI: Stage 1, in which lesions were confined to the lobar white matter; Stage 2, in which there were callosal lesions; and Stage 3, in which lesions occurred in the dorsolateral brainstem. The outcome measure used 12 months postinjury was the Glasgow Outcome Scale–Extended (GOSE).


Diffuse axonal injury was detected in 72% of the patients and a combination of DAI and contusions or hematomas was found in 50%. The GCS score was significantly lower in patients with “pure DAI” (median GCS Score 9) than in patients without DAI (median GCS Score 12; p < 0.001). The GCS score was related to outcome only in those patients with DAI (r = 0.47; p = 0.001). Patients with DAI had a median GOSE score of 7, and patients without DAI had a median GOSE score of 8 (p = 0.10). Outcome was better in patients with DAI Stage 1 (median GOSE Score 8) and DAI Stage 2 (median GOSE Score 7.5) than in patients with DAI Stage 3 (median GOSE Score 4; p < 0.001). Thus, in patients without any brainstem injury, there was no difference in good recovery between patients with DAI (67%) and patients without DAI (66%).


Diffuse axonal injury was found in almost three-quarters of the patients with moderate and severe head injury who survived the acute phase. Diffuse axonal injury influenced the level of consciousness, and only in patients with DAI was GCS score related to outcome. Finally, DAI was a negative prognostic sign only when located in the brainstem.

Restricted access

Hans Kristian Bø, Ole Solheim, Kjell-Arne Kvistad, Erik Magnus Berntsen, Sverre Helge Torp, Anne Jarstein Skjulsvik, Ingerid Reinertsen, Daniel Høyer Iversen, Geirmund Unsgård, and Asgeir Store Jakola


Extent of resection (EOR) and residual tumor volume are linked to prognosis in low-grade glioma (LGG) and there are various methods for facilitating safe maximal resection in such patients. In this prospective study the authors assess radiological and clinical results in consecutive patients with LGG treated with 3D ultrasound (US)–guided resection under general anesthesia.


Consecutive LGGs undergoing primary surgery guided with 3D US between 2008 and 2015 were included. All LGGs were classified according to the WHO 2016 classification system. Pre- and postoperative volumetric assessments were performed, and volumetric results were linked to overall and malignant-free survival. Pre- and postoperative health-related quality of life (HRQoL) was evaluated.


Forty-seven consecutive patients were included. Twenty LGGs (43%) were isocitrate dehydrogenase (IDH)–mutated, 7 (14%) were IDH wild-type, 19 (40%) had both IDH mutation and 1p/19q codeletion, and 1 had IDH mutation and inconclusive 1p/19q status. Median resection grade was 93.4%, with gross-total resection achieved in 14 patients (30%). An additional 24 patients (51%) had small tumor remnants < 10 ml. A more conspicuous tumor border (p = 0.02) and lower University of California San Francisco prognostic score (p = 0.01) were associated with less remnant tumor tissue, and overall survival was significantly better with remnants < 10 ml (p = 0.03). HRQoL was maintained or improved in 86% of patients at 1 month. In both cases with severe permanent deficits, relevant ischemia was present on diffusion-weighted postoperative MRI.


Three-dimensional US–guided LGG resections under general anesthesia are safe and HRQoL is preserved in most patients. Effectiveness in terms of EOR appears to be consistent with published studies using other advanced neurosurgical tools. Avoiding intraoperative vascular injury is a key factor for achieving good functional outcome.

Open access

Hans Kristian Moe, Turid Follestad, Nada Andelic, Asta Kristine Håberg, Anne-Mari Holte Flusund, Kjell Arne Kvistad, Elin Hildrum Saksvoll, Øystein Olsen, Sebastian Abel-Grüner, Oddrun Sandrød, Toril Skandsen, Anne Vik, and Kent Gøran Moen


The aim in this study was to investigate if MRI findings of traumatic axonal injury (TAI) after traumatic brain injury (TBI) are related to the admission Glasgow Coma Scale (GCS) score and prolonged duration of posttraumatic amnesia (PTA).


A total of 490 patients with mild to severe TBI underwent brain MRI within 6 weeks of injury (mild TBI: median 2 days; moderate to severe TBI: median 8 days). The location of TAI lesions and measures of total TAI lesion burden (number and volume of lesions on FLAIR and diffusion-weighted imaging and number of lesions on T2*-weighted gradient echo or susceptibility-weighted imaging) were quantified in a blinded manner for clinical information. The volume of contusions on FLAIR was likewise recorded. Associations between GCS score and the location and burden of TAI lesions were examined with multiple linear regression, adjusted for age, Marshall CT score (which includes compression of basal cisterns, midline shift, and mass lesions), and alcohol intoxication. The predictive value of TAI lesion location and burden for duration of PTA > 28 days was analyzed with multiple logistic regression, adjusted for age and Marshall CT score. Complete-case analyses of patients with TAI were used for the regression analyses of GCS scores (n = 268) and PTA (n = 252).


TAI lesions were observed in 58% of patients: in 7% of mild, 69% of moderate, and 93% of severe TBI cases. The TAI lesion location associated with the lowest GCS scores were bilateral lesions in the brainstem (mean difference in GCS score −2.5), followed by lesions bilaterally in the thalamus, unilaterally in the brainstem, and lesions in the splenium. The volume of TAI on FLAIR was the measure of total lesion burden most strongly associated with the GCS score. Bilateral TAI lesions in the thalamus had the largest predictive value for PTA > 28 days (OR 16.2, 95% CI 3.9–87.4). Of the measures of total TAI lesion burden, the FLAIR volume of TAI predicted PTA > 28 days the best.


Bilateral TAI lesions in the brainstem and thalamus, as well as the total volume of TAI lesions on FLAIR, had the strongest association with the GCS score and prolonged PTA. The current study proposes a first step toward a modified classification of TAI, with grades ranked according to their relation to these two measures of clinical TBI severity.