Search Results

You are looking at 1 - 8 of 8 items for

  • Author or Editor: Kiyoshi Kaneda x
Clear All Modify Search
Restricted access

Kuniyoshi Abumi, Yasuhiro Shono, Yoshihisa Kotani and Kiyoshi Kaneda

Object. In this study the authors retrospectively review 16 patients with traumatic disc herniation secondary to middle and lower cervical spine injuries who underwent a single posterior reduction and fusion procedure in which a cervical pedicle screw system was used. The study was undertaken to evaluate whether the procedure effectively reduced the disc herniation and whether it can be safely conducted without performing anterior decompressive surgery.

Methods. A total of 73 patients with middle and lower cervical spine injuries were identified. In 50 patients, pre- and postoperative magnetic resonance (MR) images were obtained, and disc herniation was defined as the presence of an extruded disc that deformed the thecal sac or nerve roots. Traumatic disc herniation was revealed in 16 patients (32%) who underwent a single posterior reduction/fusion procedure in which a cervical pedicle screw system was used. The average follow-up period was 4.25 years (2–6.25 years). In all patients the average kyphotic deformity was 18°, which was corrected to 0.7° lordosis postoperatively. Anterior translation was reduced from 8 to 0.7 mm. The preoperative disc height ratio of 63% (normal 100%) was improved to 104%. Preoperative MR images revealed traumatic disc herniation in all 16 patients; postsurgery, reduction or reversal of disc herniation was observed in all patients. Thecal sac and/or spinal cord compression had disappeared after indirect decompression was achieved using a posterior procedure. No additional decompressive procedures were required to remove residual herniated disc material. Preoperatively, four patients presented with cervical radiculopathy, 10 with myelopathy (eight incomplete and two complete), and two without neurological symptoms. At final follow up, complete recovery was observed in all four patients with radiculopathy and improvement of at least one Frankel grade was shown in six patients (60%) with myelopathy. There were no cases of neurological deterioration immediately after surgery or during the course of the follow-up period. In all patients solid bone union was demonstrated, and there were no implant-related complications.

Conclusions. Traumatic disc herniation may occur frequently in association with injury of the cervical spine. The incidence of traumatic disc herniation in our series was 32%. The cervical pedicle screw system allowed three-dimensional reduction of the injured cervical segment and reduction or reversal of a disc herniation. After surgery, compression of the thecal sac and/or spinal cord had disappeared. The cervical pedicle screw system provides effective and safe fixation of the cervical spine injury—related traumatic disc herniation, and the surgery can be performed safely in a single posteriorapproach procedure without need of additional anterior decompressive interventions.

Restricted access

Kuniyoshi Abumi, Kiyoshi Kaneda, Yasuhiro Shono and Masanori Fujiya

Object. This retrospective study was conducted to analyze the results of one-stage posterior decompression and reconstruction of the cervical spine by using pedicle screw fixation systems in 46 patients.

Methods. Causes of cervical myelopathy in these 46 patients included spondylosis or ossification of the posterior longitudinal ligament, rheumatoid arthritis, metastatic or primary vertebral tumors, cervical spinal injuries, and spinal cord tumor. Thirty-three patients underwent this one-stage procedure as primary surgery. In the remaining 13 patients who had previously undergone laminectomies, the one-stage procedure was performed as salvage surgery. Cervical pedicle screws were inserted into the pedicles after probing and tapping. Graft bone was placed on the bilateral lateral masses, and pedicle screws were interconnected longitudinally by either plates or rods. Postoperatively, 26 patients showed improved neurological status (at least one grade improvement on Frankel's functional classification). There were no cases of neurological deterioration postoperatively. Solid bony fusion was obtained in all patients, except in seven patients with metastatic tumor who did not receive bone grafts. Correction of kyphosis was satisfactory. Postoperative radiological evaluation revealed that 10 (5.3%) of 190 screws inserted into the cervical vertebrae had perforated the cortex of the pedicles; however, no neurovascular complications were caused by the perforations.

Conclusions. The pedicle screw fixation procedure, which does not require the lamina to be used as a stabilizing anchor, has proven to be valuable when performing one-stage posterior decompressive and reconstructive surgery in the cervical spine. The risk to neurovascular structures in this procedure, however, cannot be completely eliminated. Thorough knowledge of local anatomy and application of established surgical techniques are essential for this procedure.

Restricted access

Yoshihisa Kotani, Kuniyoshi Abumi, Yasuo Shikinami, Masahiko Takahata, Ken Kadoya, Tsuyoshi Kadosawa, Akio Minami and Kiyoshi Kaneda

Object. This 2-year experimental study was conducted to investigate the efficacy of a bioactive three-dimensional (3D) fabric disc for lumbar intervertebral disc replacement. The authors used a bioresorbable spinal fixation rod consisting of a forged composite of particulate unsintered hydroxyapatite/poly-l-lactide acid (HA/PLLA) for stability augmentation. The biomechanical and histological alterations as well as possible device-related loosening were examined at 2 years postoperatively.

Methods. Two lumbar intervertebral discs (L2–3 and L4–5) were replaced with the 3D fabric discs, which were augmented by two titanium screws and a spanning bioresorbable rod (HA/PLLA). The segmental biomechanics and interface bone ingrowth were investigated at 6, 15, and 24 months postoperatively, and results were compared with the other two surgical groups (3D fabric disc alone; 3D fabric disc with additional anterior instrumentation stabilization). The 3D fabric disc and HA/PLLA—spinal segments demonstrated segmental mobility at 15 and 24 months; however, the range of motion (ROM) in flexion—extension decreased to 49 and 40%, respectively, despite statistically equivalent preserved torsional ROM. Histologically there was excellent osseous fusion at the 3D fabric disc surface—vertebral body interface. At 2 years posttreatment, no adverse tissue reaction nor aseptic loosening of the device was observed.

Conclusions. Intervertebral disc replacement with the 3D fabric disc was viable and when used in conjunction with the bioresorbable HA/PLLA spinal augmentation. Further refinements of device design to create a stand-alone type are necessary to obviate the need for additional spinal stabilization.

Restricted access

Hiroshi Taneichi, Kota Suda, Tomomichi Kajino, Akira Matsumura, Hiroshi Moridaira and Kiyoshi Kaneda

Object

There are no published reports of unilateral transforaminal lumbar interbody fusion (TLIF) in which two Brantigan I/F cages were placed per level through a single portal to achieve bilateral anterior-column support. The authors describe such a surgical technique and evaluate the clinical outcomes of this procedure.

Methods

Data obtained in 86 (93.5%) of the first 92 consecutive patients who underwent the procedure were retrospectively reviewed; the minimum follow-up duration was 2 years. The clinical outcomes were evaluated using the Japanese Orthopaedic Association (JOA) scoring system. Disc height, disc angle, cage positioning in the axial plane, and fusion status were radiographically evaluated.

The mean follow-up period was 33.8 months. The mean improvement in the JOA score was 77.2%. Fusion was successful in 93% of the cases. According to the Farfan method, the mean anterior and posterior disc heights increased from 20.2 and 16.9% preoperatively to 35.9 and 22.7% at follow up, respectively (p < 0.01). The mean disc angle increased from 4.8° preoperatively to 7.5° at last follow-up examination (p < 0.01). Two cages were correctly placed to achieve bilateral anterior-column support in greater than 85% of the cases. The following complications occurred: hardware migration in two patients and deep infection cured by intravenous antibiotic therapy in one patient.

Conclusions

Unilateral TLIF involving the placement of two Brantigan cages per level led to good clinical results. Two Brantigan cages were adequately placed via a single portal, and reliable bilateral anterior-column support was achieved. Although the less invasive unilateral approach was used, the outcomes were as good as those in many reported series of posterior lumbar interbody fusion in which the Brantigan cages were placed via the bilateral approach.

Restricted access

Masahiro Kanayama, Bryan W. Cunningham, Charles J. Haggerty, Kuniyoshi Abumi, Kiyoshi Kaneda and Paul C. McAfee

Object. Interbody fusion devices are rapidly gaining acceptance as a method of ensuring lumbar interbody arthrodesis. Although different types of devices have been developed, the comparative reconstruction stability remains controversial. It also remains unclear how different stress-shielded environments are created within the devices. Using a calf spine model, this study was designed to compare the construct stiffness afforded by 11 differently designed lumbar interbody fusion devices and to quantify their stress-shielding effects by measuring pressure within the devices.

Methods. Sixty-six lumbar specimens obtained from calves were subjected to anterior interbody reconstruction at L4–5 by using one of the following interbody fusion devices: four different threaded fusion cages (BAK device, BAK Proximity, Ray TFC, and Danek TIBFD), five different nonthreaded fusion devices (oval and circular Harms cages, Brantigan PLIF and ALIF cages, and InFix device); two different types of allograft (femoral ring and bone dowel) were used. Construct stiffness was evaluated in axial compression, torsion, flexion, and lateral bending. Prior to testing, a silicon elastomer was injected into the cages and intracage pressures were measured using pressure needle transducers.

Conclusions. No statistical differences were observed in construct stiffness among the threaded cages and nonthreaded devices in most of the testing modalities. Threaded fusion cages demonstrated significantly lower intracage pressures compared with nonthreaded cages and structural allografts. Compared with nonthreaded cages and structural allografts, threaded fusion cages afforded equivalent reconstruction stiffness but provided more stress-shielded environment within the devices.

Restricted access

Yoshinobu Iwasaki, Minoru Akino, Hiroshi Abe, Mitsuo Tsuru, Kunio Tashiro, Kazuo Miyasaka, Kiyoshi Kaneda, Toyohiko Isu and Terufumi Ito

✓ Four cases of calcification of the cervical ligamentum flavum are reported, all in women over 60 years of age. Neurological findings were not significantly different from those of other cervical compressive diseases. Among radiological examinations, computerized tomography was the most valuable diagnostic tool. Calcification might have been induced by the degeneration or abnormal nutritional state of the ligamentum flavum. Endocrine abnormalities and inflammatory processes might also have been contributory factors.

Restricted access

Hitoshi Haba, Hiroshi Taneichi, Yoshihisa Kotani, Satoshi Terae, Satoru Abe, Hiroyuki Yoshikawa, Kuniyoshi Abumi, Akio Minami and Kiyoshi Kaneda

Object

The posterior ligamentous complex (PLC) in the thoracic and lumbar spine is one of the region's important stabilizers. The precise diagnosis of PLC injury is required to evaluate the instability of the injured spine; however, the accuracy of magnetic resonance (MR) imaging for diagnosing PLC injury has remained unclear. In this study, the authors compared preoperative MR imaging findings with direct intraoperative observation of PLC injury, clarifying the former's diagnostic accuracy regarding detection of PLC injury associated with the thoracic and lumbar fractures.

Methods

Data obtained in 35 patients who sustained thoracic or lumbar injuries were reviewed. There were 17 burst fractures, six flexion—distraction injuries, and 12 fracture dislocations. Each patient underwent MR imaging examination within 3 weeks of injury. Three radiologists independently evaluated sagittal MR images in a blinded fashion. The PLC-related information was retrospectively collected from each operative record. The diagnostic accuracy of MR imaging was analyzed by comparing imaging-documented intraoperative findings.

The PLC injuries were detected in 23 patients (65.7%) by direct observation during posterior spinal procedures. The diagnostic accuracy of MR imaging in detecting injury of the supraspinous ligament (SSL) and interspinous ligament (ISL) was 90.5 and 94.3%, respectively. The specificity of T1-weighted MR imaging alone for depicting the SSL was significantly greater than T2-weighted imaging alone (p < 0.05). The overall mean κ coefficient for MR imaging findings of PLC injury was 0.803, which indicated excellent interobserver reliability; that for ISL (0.915) was significantly greater than that for SSL (0.69) (p < 0.05).

Conclusions

This study clarified a high diagnostic accuracy and interobserver reliability of MR imaging for PLC injury. The precise diagnosis of PLC injury is essential to determine the mechanical instability of the injured thoracic and lumbar spine, especially in differentiating unstable (three-column) burst fractures from the relatively stable (two-column) type. The authors conclude that MR imaging is a powerful diagnostic tool to evaluate PLC injury associated with thoracic and lumbar fractures.

Restricted access

Katsuhisa Yamada, Hideki Sudo, Kiyoshi Kaneda, Yasuhiro Shono, Yuichiro Abe and Norimasa Iwasaki

OBJECTIVE

The aim of this retrospective study was to analyze the influence of upper instrumented vertebra (UIV) translation from the C7 plumb line (C7PL) on the long-term postoperative results of patients with main thoracic (MT) adolescent idiopathic scoliosis (AIS).

METHODS

Twenty-five patients had been treated surgically for AIS with a Lenke type 1 curve and had been followed up for a mean period of 18.2 years. Radiographic parameters, pulmonary function measurements, and clinical outcomes were compared between the patients (n = 15) with UIV translation < 20 mm and those (n = 10) with UIV translation ≥ 20 mm at the final follow-up. Correlations between UIV translation and radiographic or pulmonary function parameters were analyzed.

RESULTS

Patients with ≥ 20 mm UIV translation at the final follow-up had a significantly larger preoperative UIV translation than that in the patients with < 20 mm UIV translation at follow-up. The former group also had a significantly lower correction rate of the MT curve, higher chest cage ratio, and lower radiographic shoulder height (p = 0.01, 0.005, and 0.025, respectively) at the final follow-up. The Scoliosis Research Society (SRS)–30 Questionnaire scores were equivalent between the two groups. Correlation analysis showed that the following parameters were significantly associated with UIV translation: MT curve correction rate (r = -0.481, p = 0.015), chest cage ratio (r = 0.673, p < 0.001), and percent-predicted forced expiratory volume in 1 second (r = -0.455, p = 0.033).

CONCLUSIONS

The UIV translation should be considered an important factor that influences postoperative results. In MT AIS patients whose preoperative upper end vertebra (UEV) is distant from the C7PL, the UIV should be selected above the UEV to prevent large UIV translation at the postoperative follow-up.