Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Kent Bachus x
Clear All Modify Search
Full access

Graham C. Calvert, Brandon D. Lawrence, Amir M. Abtahi, Kent N. Bachus and Darrel S. Brodke


Cortical trajectory screw constructs, developed as an alternative to pedicle screw fixation for the lumbar spine, have similar in vitro biomechanics. The possibility of one screw path having the ability to rescue the other in a revision scenario holds promise but has not been evaluated. The objective in this study was to investigate the biomechanical properties of traditional pedicle screws and cortical trajectory screws when each was used to rescue the other in the setting of revision.


Ten fresh-frozen human lumbar spines were instrumented at L3–4, 5 with cortical trajectory screws and 5 with pedicle screws. Construct stiffness was recorded in flexion/extension, lateral bending, and axial rotation. The L-3 screw pullout strength was tested to failure for each specimen and salvaged with screws of the opposite trajectory. Mechanical stiffness was again recorded. The hybrid rescue trajectory screws at L-3 were then tested to failure.


Cortical screws, when used in a rescue construct, provided stiffness in flexion/extension and axial rotation similar to that provided by the initial pedicle screw construct prior to failure. The rescue pedicle screws provided stiffness similar to that provided by the primary cortical screw construct in flexion/extension, lateral bending, and axial rotation. In pullout testing, cortical rescue screws retained 60% of the original pedicle screw pullout strength, whereas pedicle rescue screws retained 65% of the original cortical screw pullout strength.


Cortical trajectory screws, previously studied as a primary mode of fixation, may also be used as a rescue option in the setting of a failed or compromised pedicle screw construct in the lumbar spine. Likewise, a standard pedicle screw construct may rescue a compromised cortical screw track. Cortical and pedicle screws each retain adequate construct stiffness and pullout strength when used for revision at the same level.

Restricted access

Frank S. Bishop, Mical M. Samuelson, Michael A. Finn, Kent N. Bachus, Darrel S. Brodke and Meic H. Schmidt


Thoracolumbar corpectomy is a procedure commonly required for the treatment of various pathologies involving the vertebral body. Although the biomechanical stability of anterior reconstruction with plating has been studied, the biomechanical contribution of posterior instrumentation to anterior constructs remains unknown. The purpose of this study was to evaluate biomechanical stability after anterior thoracolumbar corpectomy and reconstruction with varying posterior constructs by measuring bending stiffness for the axes of flexion/extension, lateral bending, and axial rotation.


Seven fresh human cadaveric thoracolumbar spine specimens were tested intact and after L-1 corpectomy and strut grafting with 4 different fixation techniques: anterior plating with bilateral, ipsilateral, contralateral, or no posterior pedicle screw fixation. Bending stiffness was measured under pure moments of ± 5 Nm in flexion/extension, lateral bending, and axial rotation, while maintaining an axial preload of 100 N with a follower load. Results for each configuration were normalized to the intact condition and were compared using ANOVA.


Spinal constructs with anterior-posterior spinal reconstruction and bilateral posterior pedicle screws were significantly stiffer in flexion/extension than intact spines or spines with anterior plating alone. Anterior plating without pedicle screw fixation was no different from the intact spine in flexion/extension and lateral bending. All constructs had reduced stiffness in axial rotation compared with intact spines.


The addition of bilateral posterior instrumentation provided significantly greater stability at the thoracolumbar junction after total corpectomy than anterior plating and should be considered in cases in which anterior column reconstruction alone may be insufficient. In cases precluding bilateral posterior fixation, unilateral posterior instrumentation may provide some additional stability.