Search Results

You are looking at 1 - 9 of 9 items for

  • Author or Editor: Kei Ando x
Clear All Modify Search
Restricted access

Shiro Imagama, Yukihiro Matsuyama, Yoshihito Sakai, Hiroshi Nakamura, Yoshito Katayama, Zenya Ito, Norimitsu Wakao, Koji Sato, Mitsuhiro Kamiya, Fumihiko Kato, Yasutsugu Yukawa, Yasushi Miura, Hisatake Yoshihara, Kazuhiro Suzuki, Kei Ando, Kenichi Hirano, Ryoji Tauchi, Akio Muramoto and Naoki Ishiguro

Object

The purpose of this study was to provide the first evidence for image classification of idiopathic spinal cord herniation (ISCH) in a multicenter study.

Methods

Twelve patients who underwent surgery for ISCH were identified, and preoperative symptoms, severity of paralysis and myelopathy, disease duration, plain radiographs, MR imaging and CT myelography findings, surgical procedure, intraoperative findings, data from spinal cord monitoring, and postoperative recovery were investigated in these patients. Findings on sagittal MR imaging and CT myelography were classified into 3 types: a kink type (Type K), a discontinuous type (Type D), and a protrusion type (Type P). Using axial images, the location of the hiatus was classified as either central (Type C) or lateral (Type L), and the laterality of the herniated spinal cord was classified based on correspondence (same; Type S) or noncorrespondence (opposite; Type O) with the hiatus location. A bone defect at the ISCH site and the laterality of the defect were also noted.

Results

Patients with Type P herniation had a good postoperative recovery, and those with a Type C location had significant severe preoperative lower-extremity paralysis and a significantly poor postoperative recovery. Patients with a bone defect had a significantly severe preoperative myelopathy, but showed no difference in postoperative recovery.

Conclusions

The authors' results showed that a Type C classification and a bone defect have strong relationships with severity of symptoms and surgical outcome and are important imaging and clinical features for ISCH. These findings may allow surgeons to determine the severity of preoperative symptoms and the probable surgical outcome from imaging.

Restricted access

Kei Ando, Shiro Imagama, Norimitsu Wakao, Kenichi Hirano, Ryoji Tauchi, Akio Muramoto, Fumihiko Kato, Yasutsugu Yukawa, Noriaki Kawakami, Koji Sato, Yuji Matsubara, Tokumi Kanemura, Yukihiro Matsuyama and Naoki Ishiguro

Object

The purpose of this study was to provide the first evidence for the influence of an ossified anterior longitudinal ligament (OALL) on the clinical features and surgical outcomes in an ossified ligamentum flavum (OLF) in the thoracic region.

Methods

Sixty-three patients who underwent surgery for a 1-level thoracic OLF were identified, and preoperative symptoms, severity of symptoms and myelopathy, disease duration, MR imaging and CT findings, surgical procedure, intraoperative findings, complications, and postoperative recovery were investigated in these patients. Entities of OALLs were found on sagittal CT images to be adjacent to or at the same vertebral level as the OLF were classified into 4 types: no discernible type (Type N), one-sided (Type O), discontinuous (Type D), and continuous (Type C).

Results

The duration of symptoms was especially long for Types D and C OALLs. Patients with Type D OALLs had a significantly worse percentage of recovery, as well as worse preoperative JOA scores.

Conclusions

The authors' results showed that a Type D OALL had strong associations with preoperative severity of symptoms and surgical outcomes. These findings may allow surgeons to determine the severity of preoperative symptoms and the probable surgical outcomes from the OALL classifications. Moreover, surgery with instrumentation for Type D OALLs may produce better surgical outcomes.

Restricted access

Zenya Ito, Shiro Imagama, Yoshihito Sakai, Yoshito Katayama, Norimitsu Wakao, Kei Ando, Kenichi Hirano, Ryoji Tauchi, Akio Muramoto, Hany El Zahlawy, Yukihiro Matsuyama and Naoki Ishiguro

Object

The purpose of this study was to review the present criteria for the compound muscle action potential (CMAP) alert and for safe spinal surgery.

Methods

The authors conducted a retrospective study of 295 patients in whom spinal cord monitoring had been performed during spinal surgery. The waveforms observed during spinal surgery were divided into the following 4 grades: Grade 0, normal; Grade 1, amplitude decrease of 50% or more and latency delay of 10% or more; Grade 2, multiphase pattern; and Grade 3, loss of amplitude. Waveform grading, its relationship with postoperative motor deficit, and CMAP sensitivity and specificity were analyzed. Whenever any wave abnormality occurred, the surgeon was notified and the surgical procedures were temporarily suspended. If no improvements were seen, the surgery was terminated.

Results

Compound muscle action potential wave changes occurred in 38.6% of cases. With Grade 1 or 2 changes, no paresis was detected. Postoperative motor deficits were seen in 8 patients, all with Grade 3 waveform changes. Among the 287 patients without postoperative motor deficits, CMAP changes were not seen in 181, with a specificity of 63%. The false-positive rate was 37% (106 of 287). However, when a Grade 2 change was set as the alarm point, sensitivity was 100% and specificity was 79.4%. The false-positive rate was 20% (59 of 295).

Conclusions

Neither the Grade 1 nor the Grade 2 groups included patients who demonstrated a motor deficit. All pareses occurred in cases showing a Grade 3 change. Therefore, the authors propose a Grade 2 change (multiphasic waveform) as a new alarm point. With the application of this criterion, the false-positive rate can be reduced to 20%.

Full access

Sho Kobayashi, Yukihiro Matsuyama, Kenichi Shinomiya, Shigenori Kawabata, Muneharu Ando, Tsukasa Kanchiku, Takanori Saito, Masahito Takahashi, Zenya Ito, Akio Muramoto, Yasushi Fujiwara, Kazunobu Kida, Kei Yamada, Kanichiro Wada, Naoya Yamamoto, Kazuhiko Satomi and Toshikazu Tani

Object

Although multimodal intraoperative spinal cord monitoring provides greater accuracy, transcranial electrical stimulation motor evoked potential (TcMEP) monitoring became the gold standard for intraoperative spinal cord monitoring. However, there is no definite alarm point for TcMEPs because a multicenter study is lacking. Thus, based on their experience with 48 true-positive cases (that is, a decrease in potentials followed by a new neurological motor deficit postoperatively) encountered between 2007 and 2009, the authors set a 70% decrease in amplitude as the alarm point for TcMEPs.

Methods

A total of 959 cases of spinal deformity, spinal cord tumor, and ossification of the posterior longitudinal ligament (OPLL) treated between 2010 and 2012 are included in this prospective multicenter study (18 institutions). These institutions are part of the Japanese Society for Spine Surgery and Related Research monitoring working group and the study group on spinal ligament ossification. The authors prospectively analyzed TcMEP variability and pre- and postoperative motor deficits. A 70% decrease in amplitude was designated as the alarm point.

Results

There were only 2 false-negative cases, which occurred during surgery for intramedullary spinal cord tumors. This new alarm criterion provided high sensitivity (95%) and specificity (91%) for intraoperative spinal cord monitoring and favorable accuracy, except in cases of intramedullary spinal cord tumor.

Conclusions

This study is the first prospective multicenter study to investigate the alarm point of TcMEPs. The authors recommend the designation of an alarm point of a 70% decrease in amplitude for routine spinal cord monitoring, particularly during surgery for spinal deformity, OPLL, and extramedullary spinal cord tumor.

Full access

Ryoji Tauchi, Shiro Imagama, Hidefumi Inoh, Yasutsugu Yukawa, Tokumi Kanemura, Koji Sato, Yoshihito Sakai, Mitsuhiro Kamiya, Hisatake Yoshihara, Zenya Ito, Kei Ando, Akio Muramoto, Hiroki Matsui, Tomohiro Matsumoto, Junichi Ukai, Kazuyoshi Kobayashi, Ryuichi Shinjo, Hiroaki Nakashima, Masayoshi Morozumi and Naoki Ishiguro

Object

Cervical spondylosis that causes upper-extremity muscle atrophy without gait disturbance is called cervical spondylotic amyotrophy (CSA). The distal type of CSA is characterized by weakness of the hand muscles. In this retrospective analysis, the authors describe the clinical features of the distal type of CSA and evaluate the results of surgical treatment.

Methods

The authors performed a retrospective review of 17 consecutive cases involving 16 men and 1 woman (mean age 56.3 years) who underwent surgical treatment for the distal type of CSA. The condition was diagnosed on the basis of cervical spondylosis in the presence of muscle impairment of the upper extremity (intrinsic muscle and/or finger extension muscles) without gait disturbance, and the presence of a compressive lesion involving the anterior horn of the spinal cord, the nerve root at the foramen, or both sites as seen on axial and sagittal views of MRI or CT myelography. The authors assessed spinal cord or nerve root impingement by MRI or CT myelography and evaluated surgical outcomes.

Results

The preoperative duration of symptoms averaged 11.8 months. There were 14 patients with impingement of the anterior horn of the spinal cord and 3 patients with both anterior horn and nerve root impingement. Twelve patients were treated with laminoplasty (plus foraminotomy in 1 case), 3 patients were treated with anterior cervical discectomy and fusion, and 2 patients were treated with posterior spinal fixation. The mean manual muscle testing grade was 2.4 (range 1–4) preoperatively and 3.4 (range 1–5) postoperatively. The surgical results were excellent in 7 patients, good in 2, and fair in 8.

Conclusions

Most of the patients in this series of cases of the distal type of CSA suffered from impingement of the anterior horn of the spinal cord, and surgical outcome was fair in about half of the cases.

Full access

Kei Ando, Shiro Imagama, Zenya Ito, Kazuyoshi Kobayashi, Hideki Yagi, Tetsuro Hida, Kenyu Ito, Mikito Tsushima, Yoshimoto Ishikawa and Naoki Ishiguro

OBJECT

Little is known about the progression of spinal schwannomas. The aim of this study was to determine the natural progression of spinal schwannomas and establish the risk of tumor growth.

METHODS

This study retrospectively analyzed data from 23 patients (12 men and 11 women, 40–89 years old) with schwannomas detected by MRI. The mean follow-up period was 5 years (range 2–10 years). The absolute and relative growth rates of the tumors were calculated.

RESULTS

The average tumor size was 1495 mm3 at the initial visit and 2224 mm3 at the final follow-up. The average absolute growth rate was 139 mm3 per year, and the average relative growth rate was 5.3% per year. Tumors were classified into 3 groups based on enhancement patterns: isointense/hyperintense (iso/high; 11 cases), rim enhancement when enhancement was peripheral (high/rim; 5 cases), and heterogeneous/heterogeneous (hetero/hetero; 7 cases) based on Gd-enhanced T2-weighted MRI. The average absolute growth rates of the 3 lesion groups were 588 mm3, 957 mm3, and 3379 mm3, respectively (p < 0.01).

CONCLUSIONS

Although the tumors classified as iso/high and high/rim on T2-weighted Gd-enhanced MR images were small and grew very little, most tumors with hetero/hetero classification increased in size. Hetero/hetero-type tumors should be followed closely and may require surgery.

Full access

Kazuyoshi Kobayashi, Shiro Imagama, Zenya Ito, Kei Ando, Tetsuro Hida, Kenyu Ito, Mikito Tsushima, Yoshimoto Ishikawa, Akiyuki Matsumoto, Yoshihiro Nishida and Naoki Ishiguro

OBJECTIVE

Corrective surgery for spinal deformities can lead to neurological complications. Several reports have described spinal cord monitoring in surgery for spinal deformity, but only a few have included patients younger than 20 years with adolescent idiopathic scoliosis (AIS). The goal of this study was to evaluate the characteristics of cases with intraoperative transcranial motor evoked potential (Tc-MEP) waveform deterioration during posterior corrective fusion for AIS.

METHODS

A prospective database was reviewed, comprising 68 patients with AIS who were treated with posterior corrective fusion in a prospective database. A total of 864 muscles in the lower extremities were chosen for monitoring, and acceptable baseline responses were obtained from 819 muscles (95%). Intraoperative Tc-MEP waveform deterioration was defined as a decrease in intraoperative amplitude of ≥ 70% of the control waveform. Age, Cobb angle, flexibility, operative time, estimated blood loss (EBL), intraoperative body temperature, blood pressure, number of levels fused, and correction rate were examined in patients with and without waveform deterioration.

RESULTS

The patients (3 males and 65 females) had an average age of 14.4 years (range 11–19 years). The mean Cobb angles before and after surgery were 52.9° and 11.9°, respectively, giving a correction rate of 77.4%. Fourteen patients (20%) exhibited an intraoperative waveform change, and these occurred during incision (14%), after screw fixation (7%), during the rotation maneuver (64%), during placement of the second rod after the rotation maneuver (7%), and after intervertebral compression (7%). Most waveform changes recovered after decreased correction or rest. No patient had a motor deficit postoperatively. In multivariate analysis, EBL (OR 1.001, p = 0.085) and number of levels fused (OR 1.535, p = 0.045) were associated with waveform deterioration.

CONCLUSIONS

Waveform deterioration commonly occurred during rotation maneuvers and more frequently in patients with a larger preoperative Cobb angle. The significant relationships of EBL and number of levels fused with waveform deterioration suggest that these surgical invasions may be involved in waveform deterioration.

Restricted access

Kazuyoshi Kobayashi, Kei Ando, Ryuichi Shinjo, Kenyu Ito, Mikito Tsushima, Masayoshi Morozumi, Satoshi Tanaka, Masaaki Machino, Kyotaro Ota, Naoki Ishiguro and Shiro Imagama

OBJECTIVE

Monitoring of brain evoked muscle-action potentials (Br[E]-MsEPs) is a sensitive method that provides accurate periodic assessment of neurological status. However, occasionally this method gives a relatively high rate of false-positives, and thus hinders surgery. The alarm point is often defined based on a particular decrease in amplitude of a Br(E)-MsEP waveform, but waveform latency has not been widely examined. The purpose of this study was to evaluate onset latency in Br(E)-MsEP monitoring in spinal surgery and to examine the efficacy of an alarm point using a combination of amplitude and latency.

METHODS

A single-center, retrospective study was performed in 83 patients who underwent spine surgery using intraoperative Br(E)-MsEP monitoring. A total of 1726 muscles in extremities were chosen for monitoring, and acceptable baseline Br(E)-MsEP responses were obtained from 1640 (95%). Onset latency was defined as the period from stimulation until the waveform was detected. Relationships of postoperative motor deficit with onset latency alone and in combination with a decrease in amplitude of ≥ 70% from baseline were examined.

RESULTS

Nine of the 83 patients had postoperative motor deficits. The delay of onset latency compared to the control waveform differed significantly between patients with and without these deficits (1.09% ± 0.06% vs 1.31% ± 0.14%, p < 0.01). In ROC analysis, an intraoperative 15% delay in latency from baseline had a sensitivity of 78% and a specificity of 96% for prediction of postoperative motor deficit. In further ROC analysis, a combination of a decrease in amplitude of ≥ 70% and delay of onset latency of ≥ 10% from baseline had sensitivity of 100%, specificity of 93%, a false positive rate of 7%, a false negative rate of 0%, a positive predictive value of 64%, and a negative predictive value of 100% for this prediction.

CONCLUSIONS

In spinal cord monitoring with intraoperative Br(E)-MsEP, an alarm point using a decrease in amplitude of ≥ 70% and delay in onset latency of ≥ 10% from baseline has high specificity that reduces false positive results.

Restricted access

Kei Ando, Kazuyoshi Kobayashi, Masaaki Machino, Kyotaro Ota, Satoshi Tanaka, Masayoshi Morozumi, Sadayuki Ito, Shunsuke Kanbara, Taro Inoue, Naoki Ishiguro and Shiro Imagama

OBJECTIVE

The objective of this study was to investigate the relationship between morphological changes in thoracic ossification of the posterior longitudinal ligament (T-OPLL) and postoperative neurological recovery after thoracic posterior fusion surgery. Changes of OPLL morphology and postoperative recovery in cases with T-OPLL have not been examined.

METHODS

In this prospective study, the authors evaluated data from 44 patients (23 male and 21 female) who underwent posterior decompression and fusion surgery with instrumentation for the treatment of T-OPLL at our hospital. The patients’ mean age at surgery was 50.7 years (range 38–68 years). The minimum duration of follow-up was 2 years. The location of thoracic ossification of the ligamentum flavum (T-OLF), T-OLF at the OPLL level, OPLL morphology, fusion range, estimated blood loss, operative time, pre- and postoperative Japanese Orthopaedic Association (JOA) scores, and JOA recovery rate were investigated. Reconstructed sagittal multislice CT images were obtained before and at 3 and 6 months and 1 and 2 years after surgery. The basic fusion area was 3 vertebrae above and below the OPLL lesion. All parameters were compared between patients with and without continuity across the disc space at the OPLL at 3 and 6 months after surgery.

RESULTS

The preoperative morphology of OPLL was discontinuous across the disc space between the rostral and caudal ossification regions on sagittal CT images in all but one of the patients. Postoperatively, these segments became continuous in 42 patients (97.7%; occurring by 6.6 months on average) without progression of OPLL thickness. Patients with continuity at 3 months had significantly lower rates of diabetes mellitus (p < 0.05) and motor palsy in the lower extremities (p < 0.01). The group with continuity also had significantly higher mean postoperative JOA scores at 3 (p < 0.01) and 6 (p < 0.05) months and mean JOA recovery rates at 3 and 6 months (both p < 0.01) after surgery.

CONCLUSIONS

Preoperatively, discontinuity of rostral and caudal ossified lesions was found on CT in all patients but one of this group of 44 patients who needed surgery for T-OPLL. Rigid fixation with instrumentation may have allowed these segments to connect at the OPLL. Such OPLL continuity at an early stage after surgery may accelerate spinal cord recovery.