Search Results

You are looking at 1 - 8 of 8 items for

  • Author or Editor: Kathleen Seidel x
Clear All Modify Search
Full access

Andreas Raabe, Jürgen Beck, Philippe Schucht and Kathleen Seidel

Object

The authors developed a new mapping technique to overcome the temporal and spatial limitations of classic subcortical mapping of the corticospinal tract (CST). The feasibility and safety of continuous (0.4–2 Hz) and dynamic (at the site of and synchronized with tissue resection) subcortical motor mapping was evaluated.

Methods

The authors prospectively studied 69 patients who underwent tumor surgery adjacent to the CST (< 1 cm using diffusion tensor imaging and fiber tracking) with simultaneous subcortical monopolar motor mapping (short train, interstimulus interval 4 msec, pulse duration 500 μsec) and a new acoustic motor evoked potential alarm. Continuous (temporal coverage) and dynamic (spatial coverage) mapping was technically realized by integrating the mapping probe at the tip of a new suction device, with the concept that this device will be in contact with the tissue where the resection is performed. Motor function was assessed 1 day after surgery, at discharge, and at 3 months.

Results

All procedures were technically successful. There was a 1:1 correlation of motor thresholds for stimulation sites simultaneously mapped with the new suction mapping device and the classic fingerstick probe (24 patients, 74 stimulation points; r2 = 0.98, p < 0.001). The lowest individual motor thresholds were as follows: > 20 mA, 7 patients; 11–20 mA, 13 patients; 6–10 mA, 8 patients; 4–5 mA, 17 patients; and 1–3 mA, 24 patients. At 3 months, 2 patients (3%) had a persistent postoperative motor deficit, both of which were caused by a vascular injury. No patient had a permanent motor deficit caused by a mechanical injury of the CST.

Conclusions

Continuous dynamic mapping was found to be a feasible and ergonomic technique for localizing the exact site of the CST and distance to the motor fibers. The acoustic feedback and the ability to stimulate the tissue continuously and exactly at the site of tissue removal improves the accuracy of mapping, especially at low (< 5 mA) stimulation intensities. This new technique may increase the safety of motor eloquent tumor surgery.

Full access

Colette Boëx, Shahan Momjian and Karl Schaller

Restricted access

Kathleen Seidel, Jürgen Beck, Lennart Stieglitz, Philippe Schucht and Andreas Raabe

Object

Mapping and monitoring are believed to provide an early warning sign to determine when to stop tumor removal to avoid mechanical damage to the corticospinal tract (CST). The objective of this study was to systematically compare subcortical monopolar stimulation thresholds (1–20 mA) with direct cortical stimulation (DCS)–motor evoked potential (MEP) monitoring signal abnormalities and to correlate both with new postoperative motor deficits. The authors sought to define a mapping threshold and DCS-MEP monitoring signal changes indicating a minimal safe distance from the CST.

Methods

A consecutive cohort of 100 patients underwent tumor surgery adjacent to the CST while simultaneous subcortical motor mapping and DCS-MEP monitoring was used. Evaluation was done regarding the lowest subcortical mapping threshold (monopolar stimulation, train of 5 stimuli, interstimulus interval 4.0 msec, pulse duration 500 μsec) and signal changes in DCS-MEPs (same parameters, 4 contact strip electrode). Motor function was assessed 1 day after surgery, at discharge, and at 3 months postoperatively.

Results

The lowest individual motor thresholds (MTs) were as follows (MT in mA, number of patients): > 20 mA, n = 12; 11–20 mA, n = 13; 6–10 mA, n = 20; 4–5 mA, n = 30; and 1–3 mA, n = 25. Direct cortical stimulation showed stable signals in 70 patients, unspecific changes in 18, irreversible alterations in 8, and irreversible loss in 4 patients. At 3 months, 5 patients had a postoperative new or worsened motor deficit (lowest mapping MT 20 mA, 13 mA, 6 mA, 3 mA, and 1 mA). In all 5 patients DCS-MEP monitoring alterations were documented (2 sudden irreversible threshold increases and 3 sudden irreversible MEP losses). Of these 5 patients, 2 had vascular ischemic lesions (MT 20 mA, 13 mA) and 3 had mechanical CST damage (MT 1 mA, 3 mA, and 6 mA; in the latter 2 cases the resection continued after mapping and severe DCS-MEP alterations occurred thereafter). In 80% of patients with a mapping MT of 1–3 mA and in 75% of patients with a mapping MT of 1 mA, DCS-MEPs were stable or showed unspecific reversible changes, and none had a permanent motor worsening at 3 months. In contrast, 25% of patients with irreversible DCS-MEP changes and 75% of patients with irreversible DCS-MEP loss had permanent motor deficits.

Conclusions

Mapping should primarily guide tumor resection adjacent to the CST. DCS-MEP is a useful predictor of deficits, but its value as a warning sign is limited because signal alterations were reversible in only approximately 60% of the present cases and irreversibility is a post hoc definition. The true safe mapping MT is lower than previously thought. The authors postulate a mapping MT of 1 mA or less where irreversible DCS-MEP changes and motor deficits regularly occur. Therefore, they recommend stopping tumor resection at an MT of 2 mA at the latest. The limited spatial and temporal coverage of contemporary mapping may increase error and may contribute to false, higher MTs.

Full access

Sedat Ulkatan, Ana Maria Jaramillo, Maria J. Téllez, Jinu Kim, Vedran Deletis and Kathleen Seidel

OBJECTIVE

The purpose of this study was to investigate the incidence of seizures during the intraoperative monitoring of motor evoked potentials (MEPs) elicited by electrical brain stimulation in a wide spectrum of surgeries such as those of the orthopedic spine, spinal cord, and peripheral nerves, interventional radiology procedures, and craniotomies for supra- and infratentorial tumors and vascular lesions.

METHODS

The authors retrospectively analyzed data from 4179 consecutive patients who underwent surgery or an interventional radiology procedure with MEP monitoring.

RESULTS

Of 4179 patients, only 32 (0.8%) had 1 or more intraoperative seizures. The incidence of seizures in cranial procedures, including craniotomies and interventional neuroradiology, was 1.8%. In craniotomies in which transcranial electrical stimulation (TES) was applied to elicit MEPs, the incidence of seizures was 0.7% (6/850). When direct cortical stimulation was additionally applied, the incidence of seizures increased to 5.4% (23/422). Patients undergoing craniotomies for the excision of extraaxial brain tumors, particularly meningiomas (15 patients), exhibited the highest risk of developing an intraoperative seizure (16 patients). The incidence of seizures in orthopedic spine surgeries was 0.2% (3/1664). None of the patients who underwent surgery for conditions of the spinal cord, neck, or peripheral nerves or who underwent cranial or noncranial interventional radiology procedures had intraoperative seizures elicited by TES during MEP monitoring.

CONCLUSIONS

In this largest such study to date, the authors report the incidence of intraoperative seizures in patients who underwent MEP monitoring during a wide spectrum of surgeries such as those of the orthopedic spine, spinal cord, and peripheral nerves, interventional radiology procedures, and craniotomies for supra- and infratentorial tumors and vascular lesions. The low incidence of seizures induced by electrical brain stimulation, particularly short-train TES, demonstrates that MEP monitoring is a safe technique that should not be avoided due to the risk of inducing seizures.

Free access

Philippe Schucht, Kathleen Seidel, Jürgen Beck, Michael Murek, Astrid Jilch, Roland Wiest, Christian Fung and Andreas Raabe

Object

Resection of glioblastoma adjacent to motor cortex or subcortical motor pathways carries a high risk of both incomplete resection and postoperative motor deficits. Although the strategy of maximum safe resection is widely accepted, the rates of complete resection of enhancing tumor (CRET) and the exact causes for motor deficits (mechanical vs vascular) are not always known. The authors report the results of their concept of combining monopolar mapping and 5-aminolevulinic acid (5-ALA)–guided surgery in patients with glioblastoma adjacent to eloquent tissue.

Methods

The authors prospectively studied 72 consecutive patients who underwent 5-ALA–guided surgery for a glioblastoma adjacent to the corticospinal tract (CST; < 10 mm) with continuous dynamic monopolar motor mapping (short-train interstimulus interval 4.0 msec, pulse duration 500 μsec) coupled to an acoustic motor evoked potential (MEP) alarm. The extent of resection was determined based on early (< 48 hours) postoperative MRI findings. Motor function was assessed 1 day after surgery, at discharge, and at 3 months.

Results

Five patients were excluded because of nonadherence to protocol; thus, 67 patients were evaluated. The lowest motor threshold reached during individual surgery was as follows (motor threshold, number of patients): > 20 mA, n = 8; 11–20 mA, n = 13; 6–10 mA, n = 10; 4–5 mA, n = 13; and 1–3 mA, n = 23. Motor deterioration at postsurgical Day 1 and at discharge occurred in 30% (n = 20) and 10% (n = 7) of patients, respectively. At 3 months, 3 patients (4%) had a persisting postoperative motor deficit, 2 caused by vascular injury and 1 by mechanical injury. The rates of intra- and postoperative seizures were 1% and 0%, respectively. Complete resection of enhancing tumor was achieved in 73% of patients (49/67) despite proximity to the CST.

Conclusions

A rather high rate of CRET can be achieved in glioblastomas in motor eloquent areas via a combination of 5-ALA for tumor identification and intraoperative mapping for distinguishing between presumed and actual motor eloquent tissues. Continuous dynamic mapping was found to be a very ergonomic technique that localizes the motor tissue early and reliably.

Full access

Philippe Schucht, Kathleen Seidel, Michael Murek, Lennart Henning Stieglitz, Natalie Urwyler, Roland Wiest, Maja Steinlin, Kurt Leibundgut, Andreas Raabe and Jürgen Beck

Object

Resection of lesions close to the primary motor cortex (M1) and the corticospinal tract (CST) is generally regarded as high-risk surgery due to reported rates of postoperative severe deficits of up to 50%. The authors' objective was to determine the feasibility and safety of low-threshold motor mapping and its efficacy for increasing the extent of lesion resection in the proximity of M1 and the CST in children and adolescents.

Methods

The authors analyzed 8 consecutive pediatric patients in whom they performed 9 resections for lesions within or close (≤ 10 mm) to M1 and/or the CST. Monopolar high-frequency motor mapping with train-of-five stimuli (pulse duration 500 μsec, interstimulus interval 4.0 msec, frequency 250 Hz) was used. The motor threshold was defined as the minimal stimulation intensity that elicited motor evoked potentials (MEPs) from target muscles (amplitude > 30 μV). Resection was performed toward M1 and the CST at sites negative to 1- to 3-mA high-frequency train-of-five stimulation.

Results

The M1 was identified through high-frequency train-of-five via application of varying low intensities. The lowest motor thresholds after final resection ranged from 1 to 9 mA in 8 cases and up to 18 mA in 1 case, indicating proximity to motor neurons. Intraoperative electroencephalography documented an absence of seizures during all surgeries. Two transient neurological deficits were observed, but there were no permanent deficits. Postoperative imaging revealed complete resection in 8 patients and a very small remnant (< 0.175 cm3) in 1 patient.

Conclusions

High-frequency train-of-five with a minimal threshold of 1–3 mA is a feasible and safe procedure for resections in the proximity of the CST. Thus, low-threshold motor mapping might help to expand the area for safe resection in pediatric patients with lesions located within the precentral gyrus and close to the CST, and may be regarded as a functional navigational tool. The additional use of continuous MEP monitoring serves as a safety feedback for the functional integrity of the CST, especially because the true excitability threshold in children is unknown.