Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Kanaan Salloum x
Clear All Modify Search
Full access

Anthony J. Kwon, William D. Hunter, Mark Moldavsky, Kanaan Salloum and Brandon Bucklen


The lateral transpsoas approach to the lumbar spine is a well-defined procedure for the management of discogenic spinal pathology necessitating surgical intervention. Intervertebral device subsidence is a postoperative clinical risk that can lead to recurrence of symptomatic pathology and the need for surgical reintervention. The current study was designed to investigate static versus expandable lateral intervertebral spacers in indirect decompression for preserving vertebral body endplate strength.


Using a cadaveric biomechanical study and a foam-block vertebral body model, researchers compared vertebral body endplate strength and distraction potential. Fourteen lumbar motion segments (7 L2–3 and 7 L4–5 specimens) were distributed evenly between static and expandable spacer groups. In each specimen discectomy was followed by trialing and spacer impaction. Motion segments were axially sectioned through the disc, and a metal stamp was used to apply a compressive load to superior and inferior vertebral bodies to quantify endplate strength. A paired, 2-sample for means t-test was performed to determine statistically significant differences between groups (p ≤ 0.05). A foam-block endplate model was used to control simulated disc tension when a spacer with 2- and 3-mm desired distraction was inserted. One-way ANOVA and a post hoc Student Newman-Keuls test were performed (p ≤ 0.05) to determine differences in distraction.


Both static and expandable spacers restored intact neural foramen and disc heights after device implantation (p > 0.05). Maximum peak loads at endplate failure for static and expandable spacers were 1764 N (± 966 N) and 2284 N (± 949 N), respectively (p ≤ 0.05). The expandable spacer consistently produced greater desired distraction than was created by the static spacer in the foam-block model (p ≤ 0.05). Distraction created by fully expanding the spacer was significantly greater than the predetermined goals of 2 mm and 3 mm (p ≤ 0.05).


The current investigation shows that increased trialing required for a static spacer may lead to additional iatrogenic endplate damage, resulting in less distraction and increased propensity for postoperative implant subsidence secondary to endplate disruption.