Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Justin Slavin x
Clear All Modify Search
Restricted access

Justin Slavin, Marcello DiStasio, Paul F. Dellaripa and Michael Groff

The authors present a case report of a patient discovered to have a rotatory subluxation of the C1–2 joint and a large retroodontoid pannus with an enhancing lesion in the odontoid process eventually proving to be caused by gout. This patient represented a diagnostic conundrum as she had known prior diagnoses of not only gout but also sarcoidosis and possible rheumatoid arthritis, and was in the demographic range where concern for an oncological process cannot fully be ruled out. Because she presented with signs and symptoms of atlantoaxial instability, she required posterior stabilization to reduce the rotatory subluxation and to stabilize the C1–2 instability. However, despite the presence of a large retroodontoid pannus, she had no evidence of spinal cord compression on physical examination or imaging and did not require an anterior procedure to decompress the pannus. To confirm the diagnosis but avoid additional procedures and morbidity, the authors proceeded with the fusion as well as a posterior biopsy to the retroodontoid pannus and confirmed a diagnosis of gout.

Full access

Narlin Beaty, Justin Slavin, Cara Diaz, Kyle Zeleznick, David Ibrahimi and Charles A. Sansur

Object

Gunshot wounds (GSWs) to the cervical spine have been examined in a limited number of case series, and operative management of this traumatic disease has been sparsely discussed. The current literature supports and the authors hypothesize that patients without neurological deficit need neither surgical fusion nor decompression. Patients with GSWs and neurological deficits, however, pose a greater management challenge. The authors have compiled the experience of the R Adams Cowley Shock Trauma Center in Baltimore, Maryland, over the past 12 years, creating the largest series of such injuries, with a total number of 40 civilian patients needing neurosurgical evaluation. The current analysis examines presenting bone injury, surgical indication, presenting neurological examination, and neurological outcome. In this study, the authors characterize the incidence, severity, and recovery potential of cervical GSWs. The rate of unstable fractures requiring surgical intervention is documented. A detailed discussion of surgical indications with a treatment algorithm for cervical instability is offered.

Methods

A total of 144 cervical GSWs were retrospectively reviewed. Of these injuries, 40 had documented neurological deficits. No neurosurgical consultation was requested for patients without deficit. Epidemiological and clinical information was collected on patients with neurological deficit, including age, sex, timing, indication, type of surgery, initial examination after resuscitation, follow-up examination, and imaging data.

Results

Twenty-eight patients (70%) presented with complete neurological deficits and 12 patients (30%) presented with incomplete injuries. Fourteen (35%) of the 40 patients underwent neurosurgical intervention. Twelve patients (30%) required intervention for cervical instability. Seven patients required internal fixation involving 4 anterior fusions, 2 posterior fusions, and 1 combined approach. Five patients were managed with halo immobilization. Two patients underwent decompression alone for neurological deterioration and persistent compressive injury, both of whom experienced marked neurological recovery. Follow-up was obtained in 92% of cases. Three patients undergoing stabilization converted at least 1 American Spinal Injury Association (ASIA) Impairment Scale (AIS) grade and the remaining operative cases experienced small ASIA motor score improvement. Eighteen patients underwent inpatient MRI. No patient suffered complications or neurological deterioration related to retained metal. Three of 28 patients presenting with AIS Grade A improved to Grade B. For those 12 patients with incomplete injury, 1 improved from AIS Grade C to D, and 3 improved from Grade D to E.

Conclusions

Spinal cord injury from GSWs often results in severe neurological deficits. In this series, 30% of these patients with deficits required intervention for instability. This is the first series that thoroughly documents AIS improvement in this patient population. Adherence to the proposed treatment algorithm may optimize neurological outcome and spine stability.

Restricted access

Bizhan Aarabi, J. Marc Simard, Joseph A. Kufera, Melvin Alexander, Katie M. Zacherl, Stuart E. Mirvis, Kathirkamanthan Shanmuganathan, Gary Schwartzbauer, Christopher M. Maulucci, Justin Slavin, Khawar Ali, Jennifer Massetti and Howard M. Eisenberg

Object

The authors performed a study to determine if lesion expansion occurs in humans during the early hours after spinal cord injury (SCI), as has been established in rodent models of SCI, and to identify factors that might predict lesion expansion.

Methods

The authors studied 42 patients with acute cervical SCI and admission American Spinal Injury Association Impairment Scale Grades A (35 patients) and B (7 patients) in whom 2 consecutive MRI scans were obtained 3–134 hours after trauma. They recorded demographic data, clinical information, Injury Severity Score (ISS), admission MRI-documented spinal canal and cord characteristics, and management strategies.

Results

The characteristics of the cohort were as follows: male/female ratio 37:5; mean age, 34.6 years; and cause of injury, motor vehicle collision, falls, and sport injuries in 40 of 42 cases. The first MRI study was performed 6.8 ±2.7 hours (mean ± SD) after injury, and the second was performed 54.5 ± 32.3 hours after injury. The rostrocaudal intramedullary length of the lesion on the first MRI scan was 59.2 ± 16.1 mm, whereas its length on the second was 88.5 ± 31.9 mm. The principal factors associated with lesion length on the first MRI study were the time between injury and imaging (p = 0.05) and the time to decompression (p = 0.03). The lesion's rate of rostrocaudal intramedullary expansion in the interval between the first and second MRI was 0.9 ± 0.8 mm/hour. The principal factors associated with the rate of expansion were the maximum spinal cord compression (p = 0.03) and the mechanism of injury (p = 0.05).

Conclusions

Spinal cord injury in humans is characterized by lesion expansion during the hours following trauma. Lesion expansion has a positive relationship with spinal cord compression and may be mitigated by early surgical decompression. Lesion expansion may be a novel surrogate measure by which to assess therapeutic effects in surgical or drug trials.