Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Julia R. Schneider x
  • All content x
Clear All Modify Search
Restricted access

Julia R. Schneider, Amrit K. Chiluwal, Mohsen Nouri, Giyarpuram N. Prashant, and Amir R. Dehdashti

OBJECTIVE

The retrosigmoid (RS) approach is a classic route used to access deep-seated brainstem cavernous malformation (CM). The angle of access is limited, so alternatives such as the transpetrosal presigmoid retrolabyrinthine (TPPR) approach have been used to overcome this limitation. Here, the authors evaluated a modification to the RS approach, horizontal fissure dissection by using the RS transhorizontal (RSTH) approach.

METHODS

Relevant clinical parameters were evaluated in 9 patients who underwent resection of lateral pontine CM. Cadaveric dissection was performed to compare the TPPR approach and the RSTH approach.

RESULTS

Five patients underwent the TPPR approach, and 4 underwent the RSTH approach. Dissection of the horizontal fissure allowed for access to the infratrigeminal safe entry zone, with a direct trajectory to the middle cerebellar peduncle similar to that used in TPPR exposure. Operative time was longer in the TPPR group. All patients had a modified Rankin Scale score ≤ 2 at the last follow-up. Cadaveric dissection confirmed increased anteroposterior working angle and middle cerebellar peduncle exposure with the addition of horizontal fissure dissection.

CONCLUSIONS

The RSTH approach leads to a direct lateral path to lateral pontine CM, with similar efficacy and shorter operative time compared with more extensive skull base exposure. The RSTH approach could be considered a valid alternative for resection of selected pontine CM.

Full access

Uzma Samadani, Sameer Farooq, Robert Ritlop, Floyd Warren, Marleen Reyes, Elizabeth Lamm, Anastasia Alex, Elena Nehrbass, Radek Kolecki, Michael Jureller, Julia Schneider, Agnes Chen, Chen Shi, Neil Mendhiratta, Jason H. Huang, Meng Qian, Roy Kwak, Artem Mikheev, Henry Rusinek, Ajax George, Robert Fergus, Douglas Kondziolka, Paul P. Huang, and R. Theodore Smith

OBJECT

Automated eye movement tracking may provide clues to nervous system function at many levels. Spatial calibration of the eye tracking device requires the subject to have relatively intact ocular motility that implies function of cranial nerves (CNs) III (oculomotor), IV (trochlear), and VI (abducent) and their associated nuclei, along with the multiple regions of the brain imparting cognition and volition. The authors have developed a technique for eye tracking that uses temporal rather than spatial calibration, enabling detection of impaired ability to move the pupil relative to normal (neurologically healthy) control volunteers. This work was performed to demonstrate that this technique may detect CN palsies related to brain compression and to provide insight into how the technique may be of value for evaluating neuropathological conditions associated with CN palsy, such as hydrocephalus or acute mass effect.

METHODS

The authors recorded subjects' eye movements by using an Eyelink 1000 eye tracker sampling at 500 Hz over 200 seconds while the subject viewed a music video playing inside an aperture on a computer monitor. The aperture moved in a rectangular pattern over a fixed time period. This technique was used to assess ocular motility in 157 neurologically healthy control subjects and 12 patients with either clinical CN III or VI palsy confirmed by neuro-ophthalmological examination, or surgically treatable pathological conditions potentially impacting these nerves. The authors compared the ratio of vertical to horizontal eye movement (height/width defined as aspect ratio) in normal and test subjects.

RESULTS

In 157 normal controls, the aspect ratio (height/width) for the left eye had a mean value ± SD of 1.0117 ± 0.0706. For the right eye, the aspect ratio had a mean of 1.0077 ± 0.0679 in these 157 subjects. There was no difference between sexes or ages. A patient with known CN VI palsy had a significantly increased aspect ratio (1.39), whereas 2 patients with known CN III palsy had significantly decreased ratios of 0.19 and 0.06, respectively. Three patients with surgically treatable pathological conditions impacting CN VI, such as infratentorial mass effect or hydrocephalus, had significantly increased ratios (1.84, 1.44, and 1.34, respectively) relative to normal controls, and 6 patients with supratentorial mass effect had significantly decreased ratios (0.27, 0.53, 0.62, 0.45, 0.49, and 0.41, respectively). These alterations in eye tracking all reverted to normal ranges after surgical treatment of underlying pathological conditions in these 9 neurosurgical cases.

CONCLUSIONS

This proof of concept series of cases suggests that the use of eye tracking to detect CN palsy while the patient watches television or its equivalent represents a new capacity for this technology. It may provide a new tool for the assessment of multiple CNS functions that can potentially be useful in the assessment of awake patients with elevated intracranial pressure from hydrocephalus or trauma.